Sol 905-907 Update: Testing “Telegraph Peak”

20 February 2015 – The latest “bump” placed the rover in a good position for detailed study of the outcrop of interest, as we all hoped. The plan that will take the rover through the weekend is, in the words of the SOWG Chair Doug Ming, “jam-packed” with science observations. The MSL tactical team is focused on examination of an outcrop target called “Telegraph Peak” to determine whether it is suitable for drilling. On Sol 905, MAHLI will take pictures of Telegraph Peak before it is cleaned off by the brush. Mastcam and ChemCam will then observe the brushed target before the arm is used to acquire a full suite of MAHLI images, two APXS measurements, and test the strength of the target by pushing the drill assembly against it. Finally, the APXS will be placed on Telegraph Peak again for overnight integrations. In parallel, starting around midnight, SAM will perform a static test of its quadrupole mass spectrometer.

The next morning, the arm will be moved out of the way to allow ChemCam and Mastcam observations of nearby targets “Brazer” and “Crazy Hollow.” Later in the afternoon, when lighting will be better for some distant targets, Mastcam will acquire a couple of mosaics. Just after sunset, now that the rover is in a new location, MARDI will acquire an image of the ground near the left front wheel. Only a few activities are planned for Sol 907, including another Mastcam mosaic and a Navcam search for dust devils, to allow the rover’s batteries to recharge in preparation for possible drilling on Sol 908.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Lauren’s Sol 903-904 Update: A Bumping Day on Mars

18 February 2015 – Curiosity is in search of the next drill target, and the main activity in today’s plan is to “bump” closer to a rock outcrop for contact science. Curiosity will perform a short drive, which will set us up to use the instruments on the rover’s arm to assess the potential for drilling here. The plan also includes several ChemCam and Mastcam observations of the targets “Emery” and “Elbert” to characterize the outcrop and a nearby vein. We will also acquire a Mastcam mosaic of the outcrop named “Newspaper Rock” to understand the local stratigraphy. After the drive Curiosity will acquire Navcam images for future targeting, and a Mastcam image for a systematic clast survey. The second sol of this plan is untargeted, so Curiosity will monitor the atmosphere with Navcam and Mastcam, and perform some ChemCam calibration activities. I’m on MER duty today, and Opportunity is also “bumping” to a location overlooking Marathon Valley. Another busy day on Mars!

Lauren Edgar is a Research Geologist at the USGS Astrogeology Science Center and a member of the MSL science team.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ryan’s Sol 899-902 Update: Long weekend, long plan!

13 February 2015 – Today we planned 4 sols to take the rover through President’s day weekend. We humans get a long weekend, but the rover has a lot of work to do! We were supposed to drive about 45 meters in the previous plan, but the data received this morning showed that the rover stopped after only 17 meters. I was on duty as the ChemCam science Payload Uplink Lead (sPUL) today, and in the science theme group meeting we were worried that the short drive would cause a major change in the plan, but it turned out not to be a problem. The rover drivers understand why the rover stopped early and had no concerns about simply continuing the drive in today’s plan. Even better, there was enough room in the plan to do the drive without changing how much time we had to do science!

The location where the rover stopped was mostly flat bedrock and large sand ripples: not where we planned to stop, but still plenty of science to do. On sol 899, ChemCam will analyze the target “Osiris” and on Sol 900 ChemCam will analyze “Garley.” Both of these targets are patches of bedrock, so the chemistry data, when combined with the many other observations of bedrock over the last few weeks and months, will help understand how the rocks change throughout the stratigraphic section.

Mastcam has an 8×3 mosaic of Osiris on Sol 899, which seems to have some fine layering that is barely visible in Navcam. On sol 900 Mastcam also will take a documentation image of Garley, a 2×2 mosaic of a layered rock near the rover called “Sneakover” (because it was snuck into the plan at the last minute), and a 2×2 mosaic of “Hermosa,” where the rover tracks cross a sand ripple.

On sol 901, ChemCam will make some passive (no laser) measurements of the sky, and then Curiosity will resume the drive that was cut short. After the drive, we have standard imaging to get our bearings, plus a Mastcam 360 degree mosaic and a Navcam cloud observation. The DAN instrument will do an active measurement after the drive to characterize the amount of light elements (such as the hydrogen in water) under the rover in the new location. And finally, ChemCam will do some routine measurements of the calibration targets.

On sol 902, the rover gets a bit of a rest, with just routine environmental measurements by RAD and REMS.

Ryan Anderson is a planetary scientist and developer at the USGS Astrogeology Science Center and a member of the ChemCam team on MSL.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Lauren’s Sol 896-898 Update:

11 February 2015 – After completing our drilling activities at the Pink Cliffs outcrop, Curiosity is ready to move on to the next location. But where to drill? We’re searching for something that is chemically very different from the last drill target (Mojave2). After much discussion, we decided to try for a recessive rock near the Whale Rock outcrop. Several possibilities were presented, and the rover planners spent the morning evaluating the terrain and accessibility of the targets. The goal is to get close to the outcrop seen in the middle of this Navcam image from Sol 837.

With that location in mind, the plan today includes a pre-drive targeted science block, a drive towards that outcrop, and some post-drive remote sensing. I was the Geology Theme Lead today, and we filled the first science block with ChemCam and Mastcam observations of the post-sieve dump pile. Then we’ll drive up the section one more time, towards the next drill target. After the drive Curiosity will acquire Mastcam and Navcam images to help with future target selection. On Sol 897 we’ll perform several atmospheric monitoring activities with Mastcam, ChemCam and Navcam to measure the atmospheric opacity and composition, and search for clouds. The science block on Sol 898 includes a Mastcam 360 degree mosaic to document the Pahrump Hills region, and a ChemCam calibration activity.

Lauren Edgar is a Research Geologist at the USGS Astrogeology Science Center and a member of the MSL science team.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Lauren’s Sol 894-895 Update: “You do have the coolest job in the world.”

09 February 2015 – The planning day kicked off to a great start, with the SOWG Chair (Aileen Yingst) reminding us that we do have the coolest job in the world. I’m the Geology Theme Lead today, and it certainly feels like an exciting job. In this plan we’ve managed to use almost every instrument onboard the rover to characterize the most recent drill sample and the surrounding environment. First we’ll dump the post-sieve sample, and then we’ll “thwack” and vibrate CHIMRA (the Collection and Handling for in-Situ Martian Rock Analysis) to clean out any remnants of the sample. Later in the plan we’ll use MAHLI and APXS to characterize the grain size and composition of the dump pile, and Mastcam to document the pile with all of the camera filters. We’ll also use ChemCam to assess a nearby vein, and MAHLI will carry out some nighttime imaging of the drill hole and CheMin inlet. We don’t often mention it in our blogs, but every sol we’re also collecting RAD, REMS and DAN data for radiation assessment, environmental monitoring, and neutron detection. Meanwhile the SAM instrument is patiently waiting to analyze the samples that we “doggie bagged” a few sols ago. I like this Front Hazcam image that came down over the weekend – I feel like Curiosity’s shadow is striking a strong pose, having conquered the “Pink Cliffs” outcrop and ready to move on to the next location!

Lauren Edgar is a Research Geologist at the USGS Astrogeology Science Center and a member of the MSL science team.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Lauren’s Sol 891-893 Update: Sample Transfer to SAM

06 February 2015 – The three sol plan will keep Curiosity very busy this weekend. The main activities in this plan include dropping off part of the Mojave2 drill sample to the SAM instrument, and some remote sensing activities with Mastcam, ChemCam and Navcam. The samples that we’re dropping off to SAM can be thought of as “doggie bags” because we’ll take the sample with us for analysis at a later time. The first sol of the weekend plan also includes several atmospheric monitoring activities with Navcam and Mastcam. The second sol includes a number of ChemCam observations to assess the chemistry of a soil target and perform some instrument calibration activities. The third sol is devoted to ChemCam and Mastcam observations of an interesting vein target named “San Francisquito” to assess its chemistry and test ChemCam autofocusing in low light conditions. The vein was previously captured in this MAHLI image. I’ll be on duty as the Geology Theme Lead on Monday, so I’m trying to get up to speed to prepare for next week!

Lauren Edgar is a Research Geologist at the USGS Astrogeology Science Center and a member of the MSL science team.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 890: CheMin Analysis

05 February 2015 – MSL’s batteries are almost fully charged, so the Sol 890 plan includes another CheMin measurement of the “Mojave2″ drill sample. CheMin and SAM require more power than the other instruments, but we want to better understand the mineral composition of the drill sample before we dump the rest of the sample and drive away, so these observations have high priority. In addition, ChemCam and Mastcam observations of a nearby target named “Searles” are planned, along with images of distant targets. I’m not scheduled SOWG Chair today, but of course I wanted to call in to the operations teleconference to see how things are going, and was glad to see that the Sol 889 activities we planned yesterday completed successfully. For example, this ChemCam RMI image shows the hole the laser made in the dump pile.

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 889 Update: Vein Target

04 February 2015 – The Sol 888 data show that the rover’s batteries are recharging, and we received more data than expected. So Sol 889 planning is less constrained by power, and we were able to include ChemCam and Mastcam observations of the dump pile (center of this image). In the afternoon, a full suite of MAHLI images of the bright vein dubbed “San Francisquito” will be taken. The APXS will then be placed on the rock adjacent to the vein for a short integration after sunset, then centered on the vein for a full overnight integration. The APXS data obtained in these two positions will allow the chemistry of the vein to be more accurately compared to that of the surrounding rock.

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 888 Update: Sample Dump Pile

03 February 2015 – The Sol 887 data received this morning show that a sample portion was successfully delivered to SAM, and the un-sieved part of the sample was dumped onto the ground as planned (the pile is just above center in this image). Sol 888 activities are limited by the need to recharge the batteries, but we were able to plan a full suite of MAHLI images of the dump pile and place APXS on it for an overnight integration. With very few additional activities in the plan, it has been a relatively easy day for me as SOWG Chair.

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 887 Update: Sample Analysis

0883MR0038510020501184E01_DXXX

02 February 2015 – I’m SOWG Chair today, so I called in to enough of the operations planning teleconferences on Saturday to ensure that I was familiar with the goals for Sol 887. Most people don’t like working on weekends, but I definitely felt that it was worthwhile to do as much as possible while MSL is active on the surface of Mars. The activities planned for Sols 885-886 went well, and we received images showing that the plasma “plumes” created by the ChemCam laser blew holes in the pile of drill tailings (e.g., just right of center in the image above).

The Sol 887 plan focuses on delivering some of the new drill sample to SAM and performing a SAM evolved gas analysis of it. This requires so much power that we can’t do much else on Sol 887, and Sol 888 activities will be limited by the availability of power.

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

baptist health montgomerybuy metronidazole