Author Archive

Ryan’s Sol 1640-1642 Update: Better Late than Never!

21 March 2017 – Sorry for the delayed posting! In the rush to get ready for the Lunar and Planetary Science Conference (LPSC), I forgot to post about the sol 1640-42 plan. Better late than never!

The weekend plan started with some Navcam atmospheric observations, followed by ChemCam on the bedrock target “Big Moose Mountain”. Mastcam documented the ChemCam target and then did some deck monitoring and atmospheric dust observations. Then MAHLI and APXS analyzed the excellently-named targets “Junk of Pork Island” and “Uncle Steve’s Point”.

On Sol 1641, ChemCam analyzed “Dram Island” and “Frye Island”. Mastcam documented those targets and the APXS targets with a couple of small mosaics, and also observed the target “Anasagunticook”. We also ran some drill diagnostics. On Sol 1642 our main activity was a drive with typical post-drive imaging and MARDI.

Now, back to LPSC! If you want to hear the latest in planetary science, I and many others are “microblogging” the sessions on twitter, using the hashtag #LPSC2017!

Ryan Anderson is a planetary scientist and developer at the USGS Astrogeology Science Center and a member of the ChemCam team on MSL.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 1644 Update: Staying put

21 March 2017 – The Sol 1644 plan focuses on arm activities, because the volume of data expected to be relayed via the MRO and Mars Odyssey orbiters in time for planning tomorrow is too small to allow both a drive and drill diagnostic tests. So the tactical science team took advantage of the opportunity for contact science by planning APXS and MAHLI observations of bedrock targets named “The Hop” and “The Horns.” But first, ChemCam and Right Mastcam will observe The Hop, then Right Mastcam will image the target AEGIS selected yesterday and examine rocks named “Heald Mountain,” “Caucomgomoc Lake,” and “Mooselookmeguntic Lake.” Mastcam will also search for late-morning dust devils. After the drill diagnostics and full suites of MAHLI images of The Hop and The Horns, the APXS will be placed on The Hop for an overnight integration. Early the next morning, Navcam will search for clouds and Mastcam will measure the amount of dust in the atmosphere.

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 1643 Update: First half of long-baseline stereo

20 March 2017 – MSL drove about 28 meters toward the south on Sol 1642 and again is in an area with Murray Formation bedrock blocks surrounded by dark sand. I helped plan ChemCam observations today, and we settled on a target called “Vinalhaven” at the left side of the layered bedrock exposure seen at upper left in this image. Right Mastcam will image Vinalhaven and coarse material to the right of that bedrock block, at targets named “Rindgemere” and “Hurd Mountain.” Then Right Mastcam will image more distant targets, with a 3×1 mosaic of a layered rock about 11 meters away dubbed “Saint Daniel” and a 28×1 mosaic of the hematite-bearing “Vera Rubin Ridge” in the distance. This latter mosaic is the first half of a long-baseline stereo observation that should allow the topography of Vera Rubin Ridge to be measured more accurately than is possible using standard Mastcam stereo images. The long baseline will be achieved by moving the rover between Mastcam observations.

Another drive is planned for Sol 1643, followed by the standard post-drive imaging plus Left Mastcam imaging of the arm workspace to support possible contact science in the next plan. Later in the afternoon, Navcam will search for dust devils and clouds, and ChemCam will again use AEGIS to autonomously select a target and acquire data.

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ryan’s Sol 1639 Update: Onward to Ogunquit Beach

16 March 2017 – Planning was challenging this morning because of some network issues at JPL, but the team figured out how to work around the problem and still managed to put together a good plan! We’ve been at Stop 3 of the dune campaign (now known as “Southern Cove”) for a couple of sols, so in today’s plan it’s time to move on.

On Sol 1639 the rover will begin by retracting the arm and doing some drill diagnostics before taking MAHLI images of the targets “Greenvale Cove” and “Holmes Hole”. After that, we have a remote sensing science block with a Navcam movie to watch for clouds above the crater rim, followed by a Mastcam change detection observation of “Holmes Hole” and a ChemCam observation of the disturbed sand at “Greenvale Cove”. Mastcam will also document “Greenvale Cove”. After the remote sensing is done, Curiosity will drive toward Stop 4 (“Ogunquit Beach”) and collect some post-drive images.

Ryan Anderson is a planetary scientist and developer at the USGS Astrogeology Science Center and a member of the ChemCam team on MSL.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ryan’s Sol 1638 Update: Busy Day for MAHLI

15 March 2017 – Today we are continuing our investigation of Stop #3 of the Bagnold Dune campaign. We start off with some MAHLI images of the APXS targets “Ripogenus” and “Spragueville” from yesterday. For these images, the MAHLI dust cover will stay closed. Then ChemCam will analyze the bedrock target “Holmes Hole” and the sand target “Spragueville”, with Mastcam support images. MAHLI will then come back to “Ripogenus” and “Spragueville” for some very close (2 cm and 1 cm, respectively) images, followed by some 25cm and 5cm images of the targets “Ash Island” and “Greenvale Cove”. APXS then will do a short analysis of “Ash Island” and a longer observation of “Greenvale Cove”. Also, as usual for our dune campaign stops, Mastcam will be taking change detection images throughout the day.

Meanwhile, many of us on the science team are busy preparing our posters and presentations for the annual Lunar and Planetary Science Conference (LPSC) which is next week!

Ryan Anderson is a planetary scientist and developer at the USGS Astrogeology Science Center and a member of the ChemCam team on MSL.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ryan’s Sol 1637 Update: Stop 3

14 March 2017 – Yesterday’s short drive was successful, so we started today with the rover parked at stop #3 of the dune campaign and the rover’s arm up in the “ready out” position. The Sol 1637 plan starts out with a couple of Mastcam atmospheric observations, followed by ChemCam analysis of two targets on a nearby sand ripple. The target “Spragueville” is in the ripple trough and “Ripogenus” is on the ripple crest. Mastcam will document both targets, and will take a couple of small mosaics of the sand ripples that are visible from our new location. Mastcam also will document the ChemCam AEGIS target from sol 1636, and collect some multispectral images of an area where the rover’s wheel disturbed the sand, called “Hildreths.”

In the afternoon, MAHLI will take pictures of the targets “Ripogenus”, “Spragueville”, and the small ripple crest “Shin Brook.” APXS will then analyze “Spragueville” and “Ripogenus”. Throughout the day, Mastcam will also periodically be taking images of the target “Holmes Hole” to watch for any changes.

Ryan Anderson is a planetary scientist and developer at the USGS Astrogeology Science Center and a member of the ChemCam team on MSL.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ryan’s Sol 1636 Update: Another Early Morning

13 March 2017 – Thankfully I wasn’t actually on duty today, because with daylight savings time Arizona is now on West-coast time, and planning started at 6:30am! In any case, the weekend plan was successful, and put us close to the third stop of the current campaign to study the Bagnold Dunes.

The Sol 1636 plan starts off with a ChemCam passive observation of Vera Rubin Ridge, with a supporting Mastcam mosaic. ChemCam will also analyze the bedrock targets “Buck Cove Mountain” and “Smyrna Mills”. After that, we will do a short “bump” to Stop 3 of the dune campaign, with post-drive imaging. In the afternoon after the drive, ChemCam will do an automated AEGIS observation (likely to hit sand) and Navcam has a few atmospheric observations. We will also unstow the arm to prepare for contact science activities tomorrow.

Ryan Anderson is a planetary scientist and developer at the USGS Astrogeology Science Center and a member of the ChemCam team on MSL.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 1634-1635 Update: Back to nominal MAHLI planning

10 March 2017 – MSL drove about 29 meters toward the south on Sol 1632, and is in a good position for weekend activities. The MAHLI images taken on Sol 1632 look good, and the dust cover is working properly, so MAHLI is ready to return to nominal operations! The tactical planning team therefore selected contact science targets on a block right in front of the rover that shows interesting color variations. This bedrock block is too close to the rover to allow ChemCam data to be safely acquired, so a nearby exposure was selected for an analogous measurement and named “Hurricane Mountain.” I helped plan ChemCam observations today, and picked a nearly-vertical layered bedrock target that we called “Hardwood Mountain.” Right Mastcam will image these targets and take a 4×3 mosaic of another bedrock block dubbed “Rocky Mountain.” Mastcam will also acquire a multispectral set of images of “North Haven,” a collection of pebbles near Hurricane Mountain, and survey the sky in the afternoon. Then MAHLI will take 5 images of “Canada Falls” from various distances before the APXS is placed on the first of 3 closely-spaced Canada Falls targets. After sunset, APXS data will be gathered on all 3 spots, using the arm to reposition the instrument between integrations.

Early on Sol 1635, Navcam will search for clouds and Mastcam will measure the dust in the atmosphere. Later in the day, more drill diagnostic tests are planned, followed by another set of Mastcam dust observations. Then the rover will drive toward the nearby dune and acquire data that will be used to select a target for the next drive, which will hopefully position the rover well for contact science on the dune sand.

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 1632-1633 Update: Contact science on “Spring Point”

08 March 2017 – The MSL rover drove a little over 40 meters on Sol 1630, to a place with bedrock blocks surrounded by dark sand. There’s a bright block with parallel linear features in the arm workspace, so the tactical team decided to plan contact science on those features. This made for an exciting day for me as MAHLI/MARDI uplink lead! The MAHLI image through the closed dust cover that was planned for Sol 1630 was successfully acquired, so we’re planning to acquire a similar image of the APXS target “Spring Point” on Sol 1632. MAHLI diagnostic images of its calibration target and more drill diagnostic tests are also planned for Sol 1632, along with ChemCam and Right Mastcam observations of Spring Point and a nearby target named “Nine Lake.” Right Mastcam will also take an image of a laminated rock dubbed “Grand Pitch” before the rover drives away.

On Sol 1633, Navcam will search for dust devils and ChemCam will again use AEGIS to autonomously select and observe a target in the rover’s new location. Finally, MARDI will take another image during twilight. If all goes well, we’ll be able to return to normal MAHLI operations this weekend!

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ryan’s Sol 1630-1631 Update: Early Morning Planning

07 March 2017 – We had an early-morning (6 AM on the west coast!) start to planning today, which was a bit painful but with the help of lots of caffeine we put together another plan full of good science! The exciting news from the weekend plan is that the MAHLI dust cover closed as planned, so we’re back in business with MAHLI.

The Sol 1630 plan will start with ChemCam observations of a vein called “Temple Stream”, a soil target called “Mattawamkeag”, and the bedrock target “Vassalboro” to coordinate with an APXS observation of “Sangerville”. MAHLI will also observe Sangerville, and Mastcam will document each of these targets. After that, the plan is to drive about 40 meters and collect some post-drive imaging.

Since we’re driving on sol 1630, sol 1631 will be dedicated to untargeted science. ChemCam has an AEGIS observation, as well as some calibration observations. This will be followed by Navcam and Mastcam atmospheric observations, including several observations to watch for dust devils.

Ryan Anderson is a planetary scientist and developer at the USGS Astrogeology Science Center and a member of the ChemCam team on MSL.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

baptist health montgomerybuy cheap metronidazole