Ryan’s Sol 1637 Update: Stop 3

14 March 2017 – Yesterday’s short drive was successful, so we started today with the rover parked at stop #3 of the dune campaign and the rover’s arm up in the “ready out” position. The Sol 1637 plan starts out with a couple of Mastcam atmospheric observations, followed by ChemCam analysis of two targets on a nearby sand ripple. The target “Spragueville” is in the ripple trough and “Ripogenus” is on the ripple crest. Mastcam will document both targets, and will take a couple of small mosaics of the sand ripples that are visible from our new location. Mastcam also will document the ChemCam AEGIS target from sol 1636, and collect some multispectral images of an area where the rover’s wheel disturbed the sand, called “Hildreths.”

In the afternoon, MAHLI will take pictures of the targets “Ripogenus”, “Spragueville”, and the small ripple crest “Shin Brook.” APXS will then analyze “Spragueville” and “Ripogenus”. Throughout the day, Mastcam will also periodically be taking images of the target “Holmes Hole” to watch for any changes.

Ryan Anderson is a planetary scientist and developer at the USGS Astrogeology Science Center and a member of the ChemCam team on MSL.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ryan’s Sol 1636 Update: Another Early Morning

13 March 2017 – Thankfully I wasn’t actually on duty today, because with daylight savings time Arizona is now on West-coast time, and planning started at 6:30am! In any case, the weekend plan was successful, and put us close to the third stop of the current campaign to study the Bagnold Dunes.

The Sol 1636 plan starts off with a ChemCam passive observation of Vera Rubin Ridge, with a supporting Mastcam mosaic. ChemCam will also analyze the bedrock targets “Buck Cove Mountain” and “Smyrna Mills”. After that, we will do a short “bump” to Stop 3 of the dune campaign, with post-drive imaging. In the afternoon after the drive, ChemCam will do an automated AEGIS observation (likely to hit sand) and Navcam has a few atmospheric observations. We will also unstow the arm to prepare for contact science activities tomorrow.

Ryan Anderson is a planetary scientist and developer at the USGS Astrogeology Science Center and a member of the ChemCam team on MSL.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 1634-1635 Update: Back to nominal MAHLI planning

10 March 2017 – MSL drove about 29 meters toward the south on Sol 1632, and is in a good position for weekend activities. The MAHLI images taken on Sol 1632 look good, and the dust cover is working properly, so MAHLI is ready to return to nominal operations! The tactical planning team therefore selected contact science targets on a block right in front of the rover that shows interesting color variations. This bedrock block is too close to the rover to allow ChemCam data to be safely acquired, so a nearby exposure was selected for an analogous measurement and named “Hurricane Mountain.” I helped plan ChemCam observations today, and picked a nearly-vertical layered bedrock target that we called “Hardwood Mountain.” Right Mastcam will image these targets and take a 4×3 mosaic of another bedrock block dubbed “Rocky Mountain.” Mastcam will also acquire a multispectral set of images of “North Haven,” a collection of pebbles near Hurricane Mountain, and survey the sky in the afternoon. Then MAHLI will take 5 images of “Canada Falls” from various distances before the APXS is placed on the first of 3 closely-spaced Canada Falls targets. After sunset, APXS data will be gathered on all 3 spots, using the arm to reposition the instrument between integrations.

Early on Sol 1635, Navcam will search for clouds and Mastcam will measure the dust in the atmosphere. Later in the day, more drill diagnostic tests are planned, followed by another set of Mastcam dust observations. Then the rover will drive toward the nearby dune and acquire data that will be used to select a target for the next drive, which will hopefully position the rover well for contact science on the dune sand.

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 1632-1633 Update: Contact science on “Spring Point”

08 March 2017 – The MSL rover drove a little over 40 meters on Sol 1630, to a place with bedrock blocks surrounded by dark sand. There’s a bright block with parallel linear features in the arm workspace, so the tactical team decided to plan contact science on those features. This made for an exciting day for me as MAHLI/MARDI uplink lead! The MAHLI image through the closed dust cover that was planned for Sol 1630 was successfully acquired, so we’re planning to acquire a similar image of the APXS target “Spring Point” on Sol 1632. MAHLI diagnostic images of its calibration target and more drill diagnostic tests are also planned for Sol 1632, along with ChemCam and Right Mastcam observations of Spring Point and a nearby target named “Nine Lake.” Right Mastcam will also take an image of a laminated rock dubbed “Grand Pitch” before the rover drives away.

On Sol 1633, Navcam will search for dust devils and ChemCam will again use AEGIS to autonomously select and observe a target in the rover’s new location. Finally, MARDI will take another image during twilight. If all goes well, we’ll be able to return to normal MAHLI operations this weekend!

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ryan’s Sol 1630-1631 Update: Early Morning Planning

07 March 2017 – We had an early-morning (6 AM on the west coast!) start to planning today, which was a bit painful but with the help of lots of caffeine we put together another plan full of good science! The exciting news from the weekend plan is that the MAHLI dust cover closed as planned, so we’re back in business with MAHLI.

The Sol 1630 plan will start with ChemCam observations of a vein called “Temple Stream”, a soil target called “Mattawamkeag”, and the bedrock target “Vassalboro” to coordinate with an APXS observation of “Sangerville”. MAHLI will also observe Sangerville, and Mastcam will document each of these targets. After that, the plan is to drive about 40 meters and collect some post-drive imaging.

Since we’re driving on sol 1630, sol 1631 will be dedicated to untargeted science. ChemCam has an AEGIS observation, as well as some calibration observations. This will be followed by Navcam and Mastcam atmospheric observations, including several observations to watch for dust devils.

Ryan Anderson is a planetary scientist and developer at the USGS Astrogeology Science Center and a member of the ChemCam team on MSL.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Lauren’s Sol 1627-1629 Update: Driving again

03 March 2017 – Good news: the MAHLI cover was successfully opened and the instrument is marked healthy again. That means it’s time to close the cover, and if that’s successful, drive away toward the next stop in the Bagnold Dunes Campaign. I was the GSTL again and it was a pretty straightforward planning day. On the first sol, we’ll acquire ChemCam observations on “Swanback” and “Rangely” to assess the composition of a ripple crest and a bright patch of bedrock. We’ll also use Mastcam to image the rover deck to monitor the movement of fines. In the afternoon, we’ll close the MAHLI cover and run a few more diagnostics. The second sol starts with an early science block for environmental monitoring, including Navcam and Mastcam observations to look for clouds and monitor the amount of dust in the atmosphere. Later in the day we’ll use Navcam to search for dust devils. Then Mastcam will acquire a large mosaic of the stratigraphy exposed beneath the hematite ridge, and ChemCam will target “Thorofare” to assess the composition of veins in the local bedrock. We’ll also acquire a long distance ChemCam RMI mosaic to monitor the slope of Mt. Sharp and look for changes. Throughout the first and second sols, we’ll continue to take Mastcam images to monitor changes in sand movement. Then Curiosity will drive further to the south, and take post-drive imaging to prepare for targeting next week. The third sol is devoted to a few more environmental monitoring activities, an autonomously selected ChemCam target, and some ChemCam calibration activities. Looking forward to driving again and getting a new view!

Lauren Edgar is a Research Geologist at the USGS Astrogeology Science Center and a member of the MSL science team.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Lauren’s Sol 1625-1626 Update: Change detection and additional remote sensing

01 March 2017 – We’re still at the second stop of the Bagnold Dune campaign, running a few more MAHLI diagnostics and focusing on targeted remote sensing. I was the GSTL today and it was still a pretty busy day for the GEO theme group. The first sol includes a ChemCam observation of a ripple crest (similar to the observation from Sol 1621 shown in the above Mastcam image) and a long distance RMI to look for changes on the slope of Mt. Sharp. We’ll also use Navcam to search for dust devils, and Mastcam will survey the color and opacity of the atmosphere. The second sol includes ChemCam observations of “Allagash” and “Hersey” to investigate some bedrock with interesting color variations. Mastcam and Navcam will also be used to monitor the atmosphere and search for dust devils. In the afternoon of both sols, APXS will continue to collect data for thermal characterization. Throughout the plan, we’ll repeat several Mastcam and MARDI images to monitor changes in sand movement. These change detection observations have produced a great dataset that shows some awesome ripple activity.

Lauren Edgar is a Research Geologist at the USGS Astrogeology Science Center and a member of the MSL science team.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Lauren’s Sol 1623-1624 Update: MAHLI diagnostics and remote sensing

27 February 2017 – Today’s two-sol plan is devoted to MAHLI diagnostics and remote sensing. It’s another late slide sol, so planning started three and half hours later than usual. The plan kicks off with arm activities to better understand the fault that MAHLI experienced last week. Then ChemCam will investigate “Dunn Brook,” a target that is just above “Chase Brook” from the weekend plan, and is shown in the above Mastcam image. The target shows some interesting color variations so ChemCam will be used to investigate changes in composition. We’ll also acquire a ChemCam observation of “Leighton,” to study the coarse sand grains at the crest of a ripple. Then Navcam will look for dust devils and clouds, in response to orbital observations that suggest recent increasing atmospheric opacity. On the second sol, Mastcam will acquire a multispectral observation on “Dunn Brook,” and will be used to document the previous APXS locations at “Tomhegan” and “Waweig.” We’ll also acquire a Mastcam image for deck monitoring to assess the movement of fines, and an upper tier Navcam mosaic to enable us to target features on Mt. Sharp. The second sol includes a number of environmental monitoring observations, using both Mastcam and Navcam to monitor the color and opacity of the atmosphere and search for dust devils. The plan also includes an APXS thermal characterization test and a number of change detection observations.

For more on Curiosity’s recent findings, check out this press release.

Lauren Edgar is a Research Geologist at the USGS Astrogeology Science Center and a member of the MSL science team.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ryan’s Sol 1619 Update: Wrapping up dune stop #2

24 February 2017 – We are wrapping up our observations at stop #2 of the second Bagnold dunes campaign. In the Sol 1619 plan, we start off with Navcam and Mastcam atmospheric observations, followed by a ChemCam observation of the sandy target “Leighton”. Mastcam will then document Leighton and the autonomously identified ChemCam target from the post-drive science block on Sol 1617. Throughout the day, there will also be a number of repeated Mastcam change detection observations. Afterward, we’ll drive away toward stop #3 and collect our standard post-drive imaging.

Ryan Anderson is a planetary scientist and developer at the USGS Astrogeology Science Center and a member of the ChemCam team on MSL.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Lauren’s Sol 1620-1622 Update: A weekend full of remote sensing

24 February 2017 – The drive on Sol 1617 went well, and Curiosity drove 20 m to the south, which put us in a good position for another stop at the Bagnold Dunes. This site was selected to enable comparison of the leading and trailing edges of the dunes. Today’s plan includes ChemCam observations of disturbed and undisturbed soil, at targets named “Tomhegan” and “Macworth.” We’ll also acquire a Mastcam multispectral observation on “Macworth,” along with systematic deck monitoring. A number of environmental monitoring activities are planned in the first science block, including two dust devil surveys, a Mastcam tau, and a crater rim extinction observation to monitor atmospheric opacity. In the afternoon we have three MAHLI targets planned: “Waweig” (undisturbed ripple crest), “Tomhegan” (undisturbed ripple flank) and “Seboomook” (disturbed sand). APXS will also acquire data on “Tomhegan,” with an overnight integration on “Waweig.” Throughout the plan, Mastcam will also perform several change detection experiments at two different locations to monitor sand movement. Looks like quite the day for investigating the Bagnold Dunes!

Lauren Edgar is a Research Geologist at the USGS Astrogeology Science Center and a member of the MSL science team.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

baptist health montgomerymetronidazole