Ryan’s Sol 1591-1592 Update: Early Wheel Check-Up

25 January 2017 – The Sol 1589-1590 plan went well, with a successful ~31 meter drive. ChemCam remains “sick” and some diagnostic activities are being planned for the weekend plan. We are approaching the Bagnold Dunes, so in order to save time and allow more room for science activities at the dunes, today’s plan does not include a drive. Instead, we will do a MAHLI check-up of the wheels. Before checking on the wheels, the Sol 1591 plan starts with APXS and MAHLI of the bedrock target “Munsungun”, followed by Mastcam of “Daniel Island” and “Chapman”. After the MAHLI images of the wheels, we will do a short “bump” drive to get in position for weekend science.

SAM will do an evolved gas experiment overnight, and then on Sol 1592 Navcam has a dust devil search and Mastcam has some multispectral images of Hematite Ridge. Mastcam also has a small stereo mosaic of “Maple Mountain”.

Ryan Anderson is a planetary scientist and developer at the USGS Astrogeology Science Center and a member of the ChemCam team on MSL.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ryan’s Sol 1589-1590 Update: Team Meeting

23 January 2017 – This week most of the Curiosity team is headed out to California for a team meeting. I’m not at the meeting because I have a new baby at home, so I’ll be following along remotely!

Even though there’s a team meeting this week, we’re still keeping the rover busy. Over the weekend the rover drove ~28 meters, and the plan for Sol 1589 continues our slow ascent of Mt. Sharp. ChemCam is still marked “sick” while we sort out the error that occurred last week, so the Sol 1589 science block is heavy on Mastcam. After Navcam does an observation to watch for dust devils, Mastcam will collect mosaics of the targets “Cape Elizabeth”, “Mount Battle”, “Mount Blue”, and “Hematite Ridge”. After that, APXS will measure the composition of “Cape Elizabeth” and MAHLI will take supporting pictures. Once the arm activity is done the rover will drive about 30 meters, squeezing between a couple of large rocks, toward some bedrock that looks good for more contact science. After the drive, we’ll do some post-drive imaging.

Sol 1590 will start with an early morning Mastcam mosaic of the north face of “Ireson Hill”, and then the rest of the day will be dedicated to Navcam and Mastcam atmospheric observations.

Ryan Anderson is a planetary scientist and developer at the USGS Astrogeology Science Center and a member of the ChemCam team on MSL.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 1586-1588 Update: ChemCam sick

20 January 2017 – MSL drove another 13 meters on Sol 1585, again placing the rover in a good position for contact science. But the telemetry also showed that ChemCam had been marked “sick,” so we will not be able to use ChemCam this weekend while the problem is diagnosed. The weekend plan is still pretty full, though! First, on Sol 1586, Right Mastcam will acquire small mosaics of nearby rocks named “Bell Brook,” “Blind Brook,” and “Beck Pond,” then Left Mastcam will take another image of the rover deck to look for changes in the dust and sand on the deck. The rover will rest until late that afternoon, when the illumination will be good for MAHLI imaging. MAHLI will take a single image before the DRT is used to brush off a bedrock target dubbed “Belle Lake,” then take a full suite of images (plus extra stereo images) of the brushed spot. MAHLI will also acquire a full suite of images of another bedrock target called “Bluffer Pond” before the APXS is placed on the same target for a short integration. Just before midnight, the APXS will be placed on Belle Lake for a longer integration. On Sol 1587, the arm will be retracted and stowed to allow Mastcam to acquire a full multispectral set of images of Belle Lake. Navcam will search for dust devils before the next drive. In addition to the standard post-drive activities, the arm will be unstowed to allow Navcam to take stereo images of the new arm workspace. MARDI will take images during twilight on Sols 1587 and 1588 to look for any changes due to winds. Navcam will again search for dust devils on Sol 1588, and CheMin will perform some maintenance activities overnight.

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 1585 Update: Examining “Jewell”

19 January 2017 – After a 31-meter drive on Sol 1584, MSL is in position for contact science on a block of bedrock in front of the rover. So, as MAHLI/MARDI uplink lead today I focused on planning a full suite of MAHLI images of a target named “Jewell” that appears to expose sedimentary structures. The Sol 1585 plan also includes ChemCam and Right Mastcam observations of Jewell, a single Right Mastcam image of another bedrock exposure dubbed “Bernard Mountain,” and a Navcam dust devil survey. The rover will then drive again and acquire images in the new location. Later in the afternoon, Mastcam will measure the amount of dust in the atmosphere and Navcam will search again for dust devils. After the usual MARDI twilight image is taken, ChemCam will perform some calibration activities at various temperatures.

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Lauren’s Sol 1584 Update: Touch and go at Frost Pond

18 January 2017 – On Sol 1583 Curiosity drove 16 m, which set us up for touch-and-go contact science today. I was the GKOP again, and it was a fun day of planning contact science and remote sensing. The plan starts with a short APXS integration on the target “Frost Pond,” (seen in the middle of the above Navcam image) to investigate the chemistry of a typical Murray bedrock block. Then we’ll take a full suite of MAHLI images on the same target. Later in the plan we’ll acquire a ChemCam observation of “Frost Pond” for comparison, and we’ll also take a Mastcam image for documentation. We’ll also acquire a small Mastcam mosaic of “Burnt Brook” to investigate some color variations, and a Navcam observation to search for dust devils. After another drive, we’ll take post-drive imaging for targeting. Later in the afternoon we’ll use Mastcam to monitor the movement of fines on the rover deck and take a systematic clast survey, and ChemCam will take another AEGIS observation.

Lauren Edgar is a Research Geologist at the USGS Astrogeology Science Center and a member of the MSL science team.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Lauren’s Sol 1583 Update: Driving and remote sensing

17 January 2017 – The 4-sol weekend plan went well, and Curiosity drove ~ 44 m further to the south. I was the GKOP today and it was a fairly straightforward plan focused on driving and remote sensing. We’re in late slide sols this week, which means that today we started 2 hours later than usual to wait for critical images to come down. The plan starts with two ChemCam observations of the target “Benner Hill” to investigate the chemistry and color variations around a vein. We also planned a small Mastcam mosaic to document the bedrock as we continue climbing Mt. Sharp. Then Curiosity will drive, and we’ll take post-drive imaging for context and targeting. We’re also planning some workspace imaging to prepare for possible APXS and MAHLI in tomorrow’s plan. Later in the afternoon ChemCam will take an autonomously selected AEGIS observation, and MARDI will take a systematic image to document the terrain beneath the rover. We’ll also use Mastcam to monitor atmospheric opacity. I’ll be on duty again tomorrow, so I’m hoping for some interesting outcrop in the workspace after today’s drive.

Lauren Edgar is a Research Geologist at the USGS Astrogeology Science Center and a member of the MSL science team.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Lauren’s Sol 1538-1540 Update: Targeted Remote Sensing

02 December 2016 – The RPs are going to take a little more time to diagnose the drill fault before we drive or use the arm again, so today’s plan is focused on targeted remote sensing. We’re still at the “Precipice” site, assessing the composition and sedimentary structures in the Murray bedrock and carrying out some long distance observations. Today’s plan includes a long distance ChemCam RMI mosaic to monitor linear features observed from HiRISE and another RMI mosaic to investigate the stratigraphy exposed in a butte called “Ireson Hill.” The plan also includes a Mastcam mosaic to search for fracture patterns in the vicinity of “Squid Cove,” and a Mastcam clast survey for change detection.

Lauren Edgar is a Research Geologist at the USGS Astrogeology Science Center and a member of the MSL science team.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 1537 Update: Drill fault

01 December 2016 – Unfortunately, the much-anticipated rotary-only drilling experiment did not even start due to a drill fault that is currently being investigated. This type of drill fault appears to be unrelated to the previous short circuits during percussion, but more study is needed. So the tactical planning team had to scramble to put together a plan while the drill experts work to recover from this anomaly. Luckily, the fault did not preclude non-drilling arm activities, so we picked the bright target “Thomas Bay” for contact science. We were also able to fit a lot of remote science observations into the plan: A Navcam cloud movie, a Right Mastcam mosaic of “Squid Cove,” Mastcam measurements of dust in the atmosphere, and a small Mastcam stereo mosaic of “Baldwin Corners.” At various times of day, Navcam and Mastcam will image the ground toward and opposite the azimuth of sunset to measure the photometric (light scattering) properties of the rocks and soils near the rover. ChemCam and the Right Mastcam will also observe bedrock target “Compass Harbor” and vein targets “Bartlett Narrows” and “Birch Point.” After drill diagnostics are performed, more Mastcam dust measurements and images of “Hulls Cove” and “Big Heath” are planned. It was a busy day for me and the other MAHLI uplink leads, as we had to modify our command sequences to take images with MAHLI’s dust cover closed and find the best time to take images in full sunlight. Since the fine-grained Sebina sample was dumped, we are concerned about material blowing onto MAHLI’s lens and sticking to it. Finally, the APXS will be placed on Thomas Bay for an overnight integration.

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 1536 Update: Drilling “Precipice”

30 November 2016 – The cross-contamination experiment and cleaning of CHIMRA went well, so we are ready to drill into the Precipice target! Past drilling activities have made use of both rotation and percussion, but percussion has caused intermittent short circuits occasionally since Sol 911, so on Sol 1536 we will test the ability of the drill to acquire a sample using rotation only, without percussion. We expect that the Precipice target is soft enough that the experiment will go well, but of course we won’t know until we try! Drilling and associated imaging will require enough power and time that additional observations could not be added to the plan.

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Ken’s Sol 1535 Update: Cross-contaminating experiment

29 November 2016 – The current drill campaign continues to go smoothly, and the Sol 1535 plan is dominated by an experiment to see if any Sebina sample material is left inside the drill bit chamber from the previous drilling. This is motivated by the fact that we only used vibration to transfer that sample from the drill bit assembly into CHIMRA, rather than also using percussion. So it’s a “cross-contamination experiment” designed to see if the vibration didn’t do a complete job back when we first drilled Sebina. Lots of images of the sieve and other parts of CHIMRA will be taken to verify that the system is clean. These activities will take a fair amount of time and power, but we were able to squeeze a few remote science observations into the plan: ChemCam will shoot its laser at bedrock targets named “West Tremont” and “Eastern Head,” and the Right Mastcam will image the same targets. The Left Mastcam will also examine fracture patterns at “Sawyer’s Cove.” Finally, Navcam will search for clouds north of the rover. If all goes well, drilling will be planned tomorrow!

Ken Herkenhoff is a ChemCam RMI specialist. An archive of Ken’s past updates can be read at http://astrogeology.usgs.gov/news/.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

baptist health montgomerybuy cheap metronidazole