Peer Reviewed

You will find below the list of peer-reviewed papers identified by the MSL team and signed or co-signed by ChemCam authors.
You can also make a larger search for articles including the word “ChemCam” in their abstract within the NASA/ADS database through this link.

Last update: 13 Oct 2019
(Zotero export by creating a bibliography in American Chemical Society format)
(1)
Thomas, N. H.; Ehlmann, B. L.; Meslin, P.-Y.; Rapin, W.; Anderson, D. E.; Rivera‐Hernández, F.; Forni, O.; Schröder, S.; Cousin, A.; Mangold, N.; et al. Mars Science Laboratory Observations of Chloride Salts in Gale Crater, Mars. Geophysical Research Letters 2019, 46 (19), 10754–10763. https://doi.org/10.1029/2019GL082764.
(2)
Rapin, W.; Ehlmann, B. L.; Dromart, G.; Schieber, J.; Thomas, N. H.; Fischer, W. W.; Fox, V. K.; Stein, N. T.; Nachon, M.; Clark, B. C.; et al. An Interval of High Salinity in Ancient Gale Crater Lake on Mars. Nat. Geosci. 2019, 1–7. https://doi.org/10.1038/s41561-019-0458-8.
(3)
Savijärvi, H.; McConnochie, T. H.; Harri, A.-M.; Paton, M. Water Vapor Mixing Ratios and Air Temperatures for Three Martian Years from Curiosity. Icarus 2019, 326, 170–175. https://doi.org/10.1016/j.icarus.2019.03.020.
(4)
Schröder, S.; Rammelkamp, K.; Vogt, D. S.; Gasnault, O.; Hübers, H.-W. Contribution of a Martian Atmosphere to Laser-Induced Breakdown Spectroscopy (LIBS) Data and Testing Its Emission Characteristics for Normalization Applications. Icarus 2019, 325, 1–15. https://doi.org/10.1016/j.icarus.2019.02.017.
(5)
Sun, V. Z.; Stack, K. M.; Kah, L. C.; Thompson, L.; Fischer, W.; Williams, A. J.; Johnson, S. S.; Wiens, R. C.; Kronyak, R. E.; Nachon, M.; et al. Late-Stage Diagenetic Concretions in the Murray Formation, Gale Crater, Mars. Icarus 2019, 321, 866–890. https://doi.org/10.1016/j.icarus.2018.12.030.
(6)
Rivera-Hernández, F.; Sumner, D. Y.; Mangold, N.; Stack, K. M.; Forni, O.; Newsom, H.; Williams, A.; Nachon, M.; L’Haridon, J.; Gasnault, O.; et al. Using ChemCam LIBS Data to Constrain Grain Size in Rocks on Mars: Proof of Concept and Application to Rocks at Yellowknife Bay and Pahrump Hills, Gale Crater. Icarus 2019, 321, 82–98. https://doi.org/10.1016/j.icarus.2018.10.023.
(7)
Payré, V.; Fabre, C.; Sautter, V.; Cousin, A.; Mangold, N.; Deit, L. L.; Forni, O.; Goetz, W.; Wiens, R. C.; Gasnault, O.; et al. Copper Enrichments in the Kimberley Formation in Gale Crater, Mars: Evidence for a Cu Deposit at the Source. Icarus 2019, 321, 736–751. https://doi.org/10.1016/j.icarus.2018.12.015.
(8)
Mangold, N.; Dehouck, E.; Fedo, C.; Forni, O.; Achilles, C.; Bristow, T.; Downs, R. T.; Frydenvang, J.; Gasnault, O.; L’Haridon, J.; et al. Chemical Alteration of Fine-Grained Sedimentary Rocks at Gale Crater. Icarus 2019, 321, 619–631. https://doi.org/10.1016/j.icarus.2018.11.004.
(9)
Moores, J. E.; Gough, R. V.; Martinez, G. M.; Meslin, P.-Y.; Smith, C. L.; Atreya, S. K.; Mahaffy, P. R.; Newman, C. E.; Webster, C. R. Methane Seasonal Cycle at Gale Crater on Mars Consistent with Regolith Adsorption and Diffusion. Nature Geoscience 2019, 12 (5), 321–325. https://doi.org/10.1038/s41561-019-0313-y.
(10)
Chide, B.; Maurice, S.; Murdoch, N.; Lasue, J.; Bousquet, B.; Jacob, X.; Cousin, A.; Forni, O.; Gasnault, O.; Meslin, P.-Y.; et al. Listening to Laser Sparks: A Link between Laser-Induced Breakdown Spectroscopy, Acoustic Measurements and Crater Morphology. Spectrochimica Acta Part B: Atomic Spectroscopy 2019, 153, 50–60. https://doi.org/10.1016/j.sab.2019.01.008.
(11)
Salvatore, M.; Truitt, K.; Roszell, K.; Lanza, N.; Rampe, E.; Mangold, N.; Dehouck, E.; Wiens, R.; Clegg, S. Investigating the Role of Anhydrous Oxidative Weathering on Sedimentary Rocks in the Transantarctic Mountains and Implications for the Modern Weathering of Sedimentary Lithologies on Mars. Icarus 2019, 319, 669–684. https://doi.org/10.1016/j.icarus.2018.10.007.
(12)
Bedford, C. C.; Bridges, J. C.; Schwenzer, S. P.; Wiens, R. C.; Rampe, E. B.; Frydenvang, J.; Gasda, P. J. Alteration Trends and Geochemical Source Region Characteristics Preserved in the Fluviolacustrine Sedimentary Record of Gale Crater, Mars. Geochimica et Cosmochimica Acta 2019, 246, 234–266. https://doi.org/10.1016/j.gca.2018.11.031.
(13)
Stack, K. M.; Grotzinger, J. P.; Lamb, M. P.; Gupta, S.; Rubin, D. M.; Kah, L. C.; Edgar, L. A.; Fey, D. M.; Hurowitz, J. A.; McBride, M.; et al. Evidence for Plunging River Plume Deposits in the Pahrump Hills Member of the Murray Formation, Gale Crater, Mars. Sedimentology 2019, 66 (5), 1768–1802. https://doi.org/10.1111/sed.12558.
(14)
Moores, J. E.; King, P. L.; Smith, C. L.; Martinez, G. M.; Newman, C. E.; Guzewich, S. D.; Meslin, P.-Y.; Webster, C. R.; Mahaffy, P. R.; Atreya, S. K.; et al. The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the ExoMars Trace Gas Orbiter and Curiosity Observations. Geophysical Research Letters 2019, 46 (16), 9430–9438. https://doi.org/10.1029/2019GL083800.
(15)
Lasue, J.; Cousin, A.; Meslin, P.-Y.; Mangold, N.; Wiens, R. C.; Berger, G.; Dehouck, E.; Forni, O.; Goetz, W.; Gasnault, O.; et al. Martian Eolian Dust Probed by ChemCam. Geophysical Research Letters 2018, 45 (20), 10,968-10,977. https://doi.org/10.1029/2018GL079210.
(16)
Johnson, J. R.; Bell, J. F.; Bender, S.; Cloutis, E.; Ehlmann, B.; Fraeman, A.; Gasnault, O.; Maurice, S.; Pinet, P.; Thompson, L.; et al. Bagnold Dunes Campaign Phase 2: Visible/Near-Infrared Reflectance Spectroscopy of Longitudinal Ripple Sands. Geophysical Research Letters 2018, 45 (18), 9480–9487. https://doi.org/10.1029/2018GL079025.
(17)
L’Haridon, J.; Mangold, N.; Meslin, P.-Y.; Johnson, J. R.; Rapin, W.; Forni, O.; Cousin, A.; Payré, V.; Dehouck, E.; Nachon, M.; et al. Chemical Variability in Mineralized Veins Observed by ChemCam on the Lower Slopes of Mount Sharp in Gale Crater, Mars. Icarus 2018, 311, 69–86. https://doi.org/10.1016/j.icarus.2018.01.028.
(18)
Thomas, N. H.; Ehlmann, B. L.; Anderson, D. E.; Clegg, S. M.; Forni, O.; Schröder, S.; Rapin, W.; Meslin, P.-Y.; Lasue, J.; Delapp, D. M.; et al. Characterization of Hydrogen in Basaltic Materials With Laser-Induced Breakdown Spectroscopy (LIBS) for Application to MSL ChemCam Data. Journal of Geophysical Research: Planets 2018, 123 (8), 1996–2021. https://doi.org/10.1029/2017JE005467.
(19)
Vaniman, D. T.; Martínez, G. M.; Rampe, E. B.; Bristow, T. F.; Blake, D. F.; Yen, A. S.; Ming, D. W.; Rapin, W.; Meslin, P.-Y.; Morookian, J. M.; et al. Gypsum, Bassanite, and Anhydrite at Gale Crater, Mars. American Mineralogist 2018, 103 (7), 1011–1020. https://doi.org/10.2138/am-2018-6346.
(20)
Stein, N.; Grotzinger, J. P.; Schieber, J.; Mangold, N.; Hallet, B.; Newsom, H.; Stack, K. M.; Berger, J. A.; Thompson, L.; Siebach, K. L.; et al. Desiccation Cracks Provide Evidence of Lake Drying on Mars, Sutton Island Member, Murray Formation, Gale Crater. Geology 2018, 46 (6), 515–518. https://doi.org/10.1130/G40005.1.
(21)
McConnochie, T. H.; Smith, M. D.; Wolff, M. J.; Bender, S.; Lemmon, M.; Wiens, R. C.; Maurice, S.; Gasnault, O.; Lasue, J.; Meslin, P.-Y.; et al. Retrieval of Water Vapor Column Abundance and Aerosol Properties from ChemCam Passive Sky Spectroscopy. Icarus 2018, 307, 294–326. https://doi.org/10.1016/j.icarus.2017.10.043.
(22)
Gabriel, T. S. J.; Hardgrove, C.; Czarnecki, S.; Rampe, E. B.; Rapin, W.; Achilles, C. N.; Sullivan, D.; Nowicki, S.; Thompson, L.; Litvak, M.; et al. Water Abundance of Dunes in Gale Crater, Mars From Active Neutron Experiments and Implications for Amorphous Phases. Geophysical Research Letters 2018, 45 (23), 12,766-12,775. https://doi.org/10.1029/2018GL079045.
(23)
Edgar, L. A.; Gupta, S.; Rubin, D. M.; Lewis, K. W.; Kocurek, G. A.; Anderson, R. B.; Bell, J. F.; Dromart, G.; Edgett, K. S.; Grotzinger, J. P.; et al. Shaler: In Situ Analysis of a Fluvial Sedimentary Deposit on Mars. Sedimentology 2018, 65 (1), 96–122. https://doi.org/10.1111/sed.12370.
(24)
Bridges, N. T.; Ehlmann, B. L. The Mars Science Laboratory (MSL) Bagnold Dunes Campaign, Phase I: Overview and Introduction to the Special Issue. Journal of Geophysical Research: Planets 2018, 123 (1), 3–19. https://doi.org/10.1002/2017JE005401.
(25)
Johnson, J. R.; Achilles, C.; Bell, J. F.; Bender, S.; Cloutis, E.; Ehlmann, B.; Fraeman, A.; Gasnault, O.; Hamilton, V. E.; Le Mouélic, S.; et al. Visible/near-Infrared Spectral Diversity from in Situ Observations of the Bagnold Dune Field Sands in Gale Crater, Mars. J. Geophys. Res. Planets 2017, 122 (12), 2016JE005187. https://doi.org/10.1002/2016JE005187.
(26)
Rapin, W.; Bousquet, B.; Lasue, J.; Meslin, P.-Y.; Lacour, J.-L.; Fabre, C.; Wiens, R. C.; Frydenvang, J.; Dehouck, E.; Maurice, S.; et al. Roughness Effects on the Hydrogen Signal in Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 2017, 137, 13–22. https://doi.org/10.1016/j.sab.2017.09.003.
(27)
Breves, E. A.; Lepore, K.; Dyar, M. D.; Bender, S. C.; Tokar, R. L.; Boucher, T. Laser-Induced Breakdown Spectra of Rock Powders at Variable Ablation and Collection Angles under Mars-Analog Conditions. Spectrochimica Acta Part B: Atomic Spectroscopy 2017, 137 (Supplement C), 46–58. https://doi.org/10.1016/j.sab.2017.09.002.
(28)
Bridges, N. T.; Sullivan, R.; Newman, C. E.; Navarro, S.; van Beek, J.; Ewing, R. C.; Ayoub, F.; Silvestro, S.; Gasnault, O.; Le Mouélic, S.; et al. Martian Aeolian Activity at the Bagnold Dunes, Gale Crater: The View from the Surface and Orbit. Journal of Geophysical Research: Planets 2017, 122 (10), 2077–2110. https://doi.org/10.1002/2017JE005263.
(29)
Francis, R.; Estlin, T.; Doran, G.; Johnstone, S.; Gaines, D.; Verma, V.; Burl, M.; Frydenvang, J.; Montaño, S.; Wiens, R. C.; et al. AEGIS Autonomous Targeting for ChemCam on Mars Science Laboratory: Deployment and Results of Initial Science Team Use. Science Robotics 2017, 2 (7). https://doi.org/10.1126/scirobotics.aan4582.
(30)
Wellington, D. F.; Bell, J. F.; Johnson, J. R.; Kinch, K. M.; Rice, M. S.; Godber, A.; Ehlmann, B. L.; Fraeman, A. A.; Hardgrove, C. Visible to Near-Infrared MSL/Mastcam Multispectral Imaging: Initial Results from Select High-Interest Science Targets within Gale Crater, Mars. American Mineralogist 2017, 102 (6), 1202–1217. https://doi.org/10.2138/am-2017-5760CCBY.
(31)
Wiens, R. C.; Rubin, D. M.; Goetz, W.; Fairén, A. G.; Schwenzer, S. P.; Johnson, J. R.; Milliken, R.; Clark, B.; Mangold, N.; Stack, K. M.; et al. Centimeter to Decimeter Hollow Concretions and Voids in Gale Crater Sediments, Mars. Icarus 2017, 289, 144–156. https://doi.org/10.1016/j.icarus.2017.02.003.
(32)
Cousin, A.; Sautter, V.; Payré, V.; Forni, O.; Mangold, N.; Gasnault, O.; Le Deit, L.; Johnson, J.; Maurice, S.; Salvatore, M.; et al. Classification of Igneous Rocks Analyzed by ChemCam at Gale Crater, Mars. Icarus 2017, 288, 265–283. https://doi.org/10.1016/j.icarus.2017.01.014.
(33)
Dequaire, T.; Meslin, P.-Y.; Beck, P.; Jaber, M.; Cousin, A.; Rapin, W.; Lasne, J.; Gasnault, O.; Maurice, S.; Buch, A.; et al. Analysis of Carbon and Nitrogen Signatures with Laser-Induced Breakdown Spectroscopy; the Quest for Organics under Mars-like Conditions. Spectrochimica Acta Part B: Atomic Spectroscopy 2017, 131, 8–17. https://doi.org/10.1016/j.sab.2017.02.015.
(34)
Lepore, K. H.; Fassett, C. I.; Breves, E. A.; Byrne, S.; Giguere, S.; Boucher, T.; Rhodes, J. M.; Vollinger, M.; Anderson, C. H.; Murray, R. W.; et al. Matrix Effects in Quantitative Analysis of Laser-Induced Breakdown Spectroscopy (LIBS) of Rock Powders Doped with Cr, Mn, Ni, Zn, and Co. Appl Spectrosc 2017, 71 (4), 600–626. https://doi.org/10.1177/0003702816685095.
(35)
Rapin, W.; Meslin, P.-Y.; Maurice, S.; Wiens, R. C.; Laporte, D.; Chauviré, B.; Gasnault, O.; Schröder, S.; Beck, P.; Bender, S.; et al. Quantification of Water Content by Laser Induced Breakdown Spectroscopy on Mars. Spectrochimica Acta Part B: Atomic Spectroscopy 2017, 130, 82–100. https://doi.org/10.1016/j.sab.2017.02.007.
(36)
Payré, V.; Fabre, C.; Cousin, A.; Sautter, V.; Wiens, R. C.; Forni, O.; Gasnault, O.; Mangold, N.; Meslin, P.-Y.; Lasue, J.; et al. Alkali Trace Elements in Gale Crater, Mars, with ChemCam: Calibration Update and Geological Implications. J. Geophys. Res. Planets 2017, 122 (3), 2016JE005201. https://doi.org/10.1002/2016JE005201.
(37)
Mangold, N.; Schmidt, M. E.; Fisk, M. R.; Forni, O.; McLennan, S. M.; Ming, D. W.; Sautter, V.; Sumner, D.; Williams, A. J.; Clegg, S. M.; et al. Classification Scheme for Sedimentary and Igneous Rocks in Gale Crater, Mars. Icarus 2017, 284, 1–17. https://doi.org/10.1016/j.icarus.2016.11.005.
(38)
Anderson, R. B.; Clegg, S. M.; Frydenvang, J.; Wiens, R. C.; McLennan, S.; Morris, R. V.; Ehlmann, B.; Dyar, M. D. Improved Accuracy in Quantitative Laser-Induced Breakdown Spectroscopy Using Sub-Models. Spectrochimica Acta Part B: Atomic Spectroscopy 2017, 129 (Supplement C), 49–57. https://doi.org/10.1016/j.sab.2016.12.002.
(39)
Clegg, S. M.; Wiens, R. C.; Anderson, R.; Forni, O.; Frydenvang, J.; Lasue, J.; Cousin, A.; Payré, V.; Boucher, T.; Dyar, M. D.; et al. Recalibration of the Mars Science Laboratory ChemCam Instrument with an Expanded Geochemical Database. Spectrochimica Acta Part B: Atomic Spectroscopy 2017, 129, 64–85. https://doi.org/10.1016/j.sab.2016.12.003.
(40)
Rubin, D. M.; Fairén, A. G.; Martínez-Frías, J.; Frydenvang, J.; Gasnault, O.; Gelfenbaum, G.; Goetz, W.; Grotzinger, J. P.; Mouélic, S. L.; Mangold, N.; et al. Fluidized-Sediment Pipes in Gale Crater, Mars, and Possible Earth Analogs. Geology 2017, 45 (1), 7–10. https://doi.org/10.1130/G38339.1.
(41)
Nachon, M.; Mangold, N.; Forni, O.; Kah, L. C.; Cousin, A.; Wiens, R. C.; Anderson, R.; Blaney, D.; Blank, J. G.; Calef, F.; et al. Chemistry of Diagenetic Features Analyzed by ChemCam at Pahrump Hills, Gale Crater, Mars. Icarus 2017, 281, 121–136. https://doi.org/10.1016/j.icarus.2016.08.026.
(42)
Anderson, D. E.; Ehlmann, B. L.; Forni, O.; Clegg, S. M.; Cousin, A.; Thomas, N. H.; Lasue, J.; Delapp, D. M.; McInroy, R. E.; Gasnault, O.; et al. Characterization of LIBS Emission Lines for the Identification of Chlorides, Carbonates, and Sulfates in Salt/Basalt Mixtures for the Application to MSL ChemCam Data. J. Geophys. Res. Planets 2017, 2016JE005164. https://doi.org/10.1002/2016JE005164.
(43)
Rice, M. S.; Gupta, S.; Treiman, A. H.; Stack, K. M.; Calef, F.; Edgar, L. A.; Grotzinger, J.; Lanza, N.; Le Deit, L.; Lasue, J.; et al. Geologic Overview of the Mars Science Laboratory Rover Mission at the Kimberley, Gale Crater, Mars: Overview of MSL at the Kimberley. Journal of Geophysical Research: Planets 2017, 122 (1), 2–20. https://doi.org/10.1002/2016JE005200.
(44)
Gasda, P. J.; Haldeman, E. B.; Wiens, R. C.; Rapin, W.; Bristow, T. F.; Bridges, J. C.; Schwenzer, S. P.; Clark, B.; Herkenhoff, K.; Frydenvang, J.; et al. In Situ Detection of Boron by ChemCam on Mars. Geophysical Research Letters 2017, 44 (17), 8739–8748. https://doi.org/10.1002/2017GL074480.
(45)
Frydenvang, J.; Gasda, P. J.; Hurowitz, J. A.; Grotzinger, J. P.; Wiens, R. C.; Newsom, H. E.; Edgett, K. S.; Watkins, J.; Bridges, J. C.; Maurice, S.; et al. Diagenetic Silica Enrichment and Late-Stage Groundwater Activity in Gale Crater, Mars. Geophysical Research Letters 2017, 44 (10), 4716–4724. https://doi.org/10.1002/2017GL073323.
(46)
Ehlmann, B. L.; Edgett, K. S.; Sutter, B.; Achilles, C. N.; Litvak, M. L.; Lapotre, M. G. A.; Sullivan, R.; Fraeman, A. A.; Arvidson, R. E.; Blake, D. F.; et al. Chemistry, Mineralogy, and Grain Properties at Namib and High Dunes, Bagnold Dune Field, Gale Crater, Mars: A Synthesis of Curiosity Rover Observations. Journal of Geophysical Research: Planets 2017, 122 (12), 2510–2543. https://doi.org/10.1002/2017JE005267.
(47)
Edwards, P. H.; Bridges, J. C.; Wiens, R.; Anderson, R.; Dyar, D.; Fisk, M.; Thompson, L.; Gasda, P.; Filiberto, J.; Schwenzer, S. P.; et al. Basalt–Trachybasalt Samples in Gale Crater, Mars. Meteoritics & Planetary Science 2017, 52 (11), 2931–2410. https://doi.org/10.1111/maps.12953.
(48)
Schwenzer, S. P.; Bridges, J. C.; Wiens, R. C.; Conrad, P. G.; Kelley, S. P.; Leveille, R.; Mangold, N.; Martín-Torres, J.; McAdam, A.; Newsom, H.; et al. Fluids during Diagenesis and Sulfate Vein Formation in Sediments at Gale Crater, Mars. Meteorit Planet Sci 2016, 51 (11), 2175–2202. https://doi.org/10.1111/maps.12668.
(49)
Rapin, W.; Meslin, P.-Y.; Maurice, S.; Vaniman, D.; Nachon, M.; Mangold, N.; Schröder, S.; Gasnault, O.; Forni, O.; Wiens, R. C.; et al. Hydration State of Calcium Sulfates in Gale Crater, Mars: Identification of Bassanite Veins. Earth and Planetary Science Letters 2016, 452, 197–205. https://doi.org/10.1016/j.epsl.2016.07.045.
(50)
Jackson, R. S.; Wiens, R. C.; Vaniman, D. T.; Beegle, L.; Gasnault, O.; Newsom, H. E.; Maurice, S.; Meslin, P.-Y.; Clegg, S.; Cousin, A.; et al. ChemCam Investigation of the John Klein and Cumberland Drill Holes and Tailings, Gale Crater, Mars. Icarus 2016, 277, 330–341. https://doi.org/10.1016/j.icarus.2016.04.026.
(51)
Dyar, M. D.; Fassett, C. I.; Giguere, S.; Lepore, K.; Byrne, S.; Boucher, T.; Carey, C.; Mahadevan, S. Comparison of Univariate and Multivariate Models for Prediction of Major and Minor Elements from Laser-Induced Breakdown Spectra with and without Masking. Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 123, 93–104. https://doi.org/10.1016/j.sab.2016.07.010.
(52)
Lanza, N. L.; Wiens, R. C.; Arvidson, R. E.; Clark, B. C.; Fischer, W. W.; Gellert, R.; Grotzinger, J. P.; Hurowitz, J. A.; McLennan, S. M.; Morris, R. V.; et al. Oxidation of Manganese in an Ancient Aquifer, Kimberley Formation, Gale Crater, Mars. Geophys. Res. Lett. 2016, 43 (14), 2016GL069109. https://doi.org/10.1002/2016GL069109.
(53)
Johnson, J. R.; Bell, J. F.; Bender, S.; Blaney, D.; Cloutis, E.; Ehlmann, B.; Fraeman, A.; Gasnault, O.; Kinch, K.; Le Mouélic, S.; et al. Constraints on Iron Sulfate and Iron Oxide Mineralogy from ChemCam Visible/near-Infrared Reflectance Spectroscopy of Mt. Sharp Basal Units, Gale Crater, Mars. American Mineralogist 2016, 101 (7), 1501–1514. https://doi.org/10.2138/am-2016-5553.
(54)
Sautter, V.; Toplis, M. J.; Beck, P.; Mangold, N.; Wiens, R.; Pinet, P.; Cousin, A.; Maurice, S.; LeDeit, L.; Hewins, R.; et al. Magmatic Complexity on Early Mars as Seen through a Combination of Orbital, in-Situ and Meteorite Data. Lithos 2016, 254–255, 36–52. https://doi.org/10.1016/j.lithos.2016.02.023.
(55)
Mezzacappa, A.; Melikechi, N.; Cousin, A.; Wiens, R. C.; Lasue, J.; Clegg, S. M.; Tokar, R.; Bender, S.; Lanza, N. L.; Maurice, S.; et al. Application of Distance Correction to ChemCam Laser-Induced Breakdown Spectroscopy Measurements. Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 120, 19–29. https://doi.org/10.1016/j.sab.2016.03.009.
(56)
Le Deit, L.; Mangold, N.; Forni, O.; Cousin, A.; Lasue, J.; Schröder, S.; Wiens, R. C.; Sumner, D.; Fabre, C.; Stack, K. M.; et al. The Potassic Sedimentary Rocks in Gale Crater, Mars, as Seen by ChemCam on Board Curiosity. J. Geophys. Res. Planets 2016, 121 (5), 2015JE004987. https://doi.org/10.1002/2015JE004987.
(57)
Maurice, S.; Clegg, S. M.; Wiens, R. C.; Gasnault, O.; Rapin, W.; Forni, O.; Cousin, A.; Sautter, V.; Mangold, N.; Deit, L. L.; et al. ChemCam Activities and Discoveries during the Nominal Mission of the Mars Science Laboratory in Gale Crater, Mars. J. Anal. At. Spectrom. 2016, 31 (4), 863–889. https://doi.org/10.1039/C5JA00417A.
(58)
Mangold, N.; Thompson, L. M.; Forni, O.; Williams, A. J.; Fabre, C.; Le Deit, L.; Wiens, R. C.; Williams, R.; Anderson, R. B.; Blaney, D. L.; et al. Composition of Conglomerates Analyzed by the Curiosity Rover: Implications for Gale Crater Crust and Sediment Sources. J. Geophys. Res. Planets 2016, 121 (3), 2015JE004977. https://doi.org/10.1002/2015JE004977.
(59)
Treiman, A. H.; Bish, D. L.; Vaniman, D. T.; Chipera, S. J.; Blake, D. F.; Ming, D. W.; Morris, R. V.; Bristow, T. F.; Morrison, S. M.; Baker, M. B.; et al. Mineralogy, Provenance, and Diagenesis of a Potassic Basaltic Sandstone on Mars: CheMin X-Ray Diffraction of the Windjana Sample (Kimberley Area, Gale Crater). Journal of Geophysical Research (Planets) 2016, 121, 75–106. https://doi.org/10.1002/2015JE004932.
(60)
Wiens, R. C.; Clegg, S. M.; Maurice, S.; Gasnault, O. Diversity of Chemistry and Geologic Processes Observed by the MSL/ChemCam Laser Instrument in Gale Crater, Mars. Space Research Today 2016, 195, 21–37. https://doi.org/10.1016/j.srt.2016.03.009.
(61)
Lasue, J.; Clegg, S. M.; Forni, O.; Cousin, A.; Wiens, R. C.; Lanza, N.; Mangold, N.; Le Deit, L.; Gasnault, O.; Maurice, S.; et al. Observation of > 5 Wt % Zinc at the Kimberley Outcrop, Gale Crater, Mars. Journal of Geophysical Research: Planets 2016, n/a-n/a. https://doi.org/10.1002/2015JE004946.
(62)
Cloutis, E. A.; Mann, P.; Izawa, M. R. M.; Applin, D. M.; Samson, C.; Kruzelecky, R.; Glotch, T. D.; Mertzman, S. A.; Mertzman, K. R.; Haltigin, T. W.; et al. The Canadian Space Agency Planetary Analogue Materials Suite. Planetary and Space Science 2015, 119, 155–172. https://doi.org/10.1016/j.pss.2015.09.001.
(63)
Grotzinger, J. P.; Gupta, S.; Malin, M. C.; Rubin, D. M.; Schieber, J.; Siebach, K.; Sumner, D. Y.; Stack, K. M.; Vasavada, A. R.; Arvidson, R. E.; et al. Deposition, Exhumation, and Paleoclimate of an Ancient Lake Deposit, Gale Crater, Mars. Science 2015, 350 (6257), aac7575–aac7575. https://doi.org/10.1126/science.aac7575.
(64)
Boucher, T.; Carey, C.; Dyar, M. D.; Mahadevan, S.; Clegg, S.; Wiens, R. Manifold Preprocessing for Laser-Induced Breakdown Spectroscopy under Mars Conditions. J. Chemometrics 2015, 29 (9), 484–491. https://doi.org/10.1002/cem.2727.
(65)
Sautter, V.; Toplis, M. J.; Wiens, R. C.; Cousin, A.; Fabre, C.; Gasnault, O.; Maurice, S.; Forni, O.; Lasue, J.; Ollila, A.; et al. In Situ Evidence for Continental Crust on Early Mars. Nature Geosci 2015, 8 (8), 605–609. https://doi.org/10.1038/ngeo2474.
(66)
Boucher, T. F.; Ozanne, M. V.; Carmosino, M. L.; Dyar, M. D.; Mahadevan, S.; Breves, E. A.; Lepore, K. H.; Clegg, S. M. A Study of Machine Learning Regression Methods for Major Elemental Analysis of Rocks Using Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 2015, 107, 1–10. https://doi.org/10.1016/j.sab.2015.02.003.
(67)
Schröder, S.; Meslin, P.-Y.; Gasnault, O.; Maurice, S.; Cousin, A.; Wiens, R. C.; Rapin, W.; Dyar, M. D.; Mangold, N.; Forni, O.; et al. Hydrogen Detection with ChemCam at Gale Crater. Icarus 2015, 249, 43–61. https://doi.org/10.1016/j.icarus.2014.08.029.
(68)
Mangold, N.; Forni, O.; Dromart, G.; Stack, K.; Wiens, R. C.; Gasnault, O.; Sumner, D. Y.; Nachon, M.; Meslin, P.-Y.; Anderson, R. B.; et al. Chemical Variations in Yellowknife Bay Formation Sedimentary Rocks Analyzed by ChemCam on Board the Curiosity Rover on Mars. Journal of Geophysical Research (Planets) 2015, 120, 452–482. https://doi.org/10.1002/2014JE004681.
(69)
Le Mouélic, S.; Gasnault, O.; Herkenhoff, K. E.; Bridges, N. T.; Langevin, Y.; Mangold, N.; Maurice, S.; Wiens, R. C.; Pinet, P.; Newsom, H. E.; et al. The ChemCam Remote Micro-Imager at Gale Crater: Review of the First Year of Operations on Mars. Icarus 2015, 249, 93–107. https://doi.org/10.1016/j.icarus.2014.05.030.
(70)
Lanza, N. L.; Ollila, A. M.; Cousin, A.; Wiens, R. C.; Clegg, S.; Mangold, N.; Bridges, N.; Cooper, D.; Schmidt, M.; Berger, J.; et al. Understanding the Signature of Rock Coatings in Laser-Induced Breakdown Spectroscopy Data. Icarus 2015, 249, 62–73. https://doi.org/10.1016/j.icarus.2014.05.038.
(71)
Johnson, J. R.; Bell, J. F.; Bender, S.; Blaney, D.; Cloutis, E.; DeFlores, L.; Ehlmann, B.; Gasnault, O.; Gondet, B.; Kinch, K.; et al. ChemCam Passive Reflectance Spectroscopy of Surface Materials at the Curiosity Landing Site, Mars. Icarus 2015, 249, 74–92. https://doi.org/10.1016/j.icarus.2014.02.028.
(72)
Cousin, A.; Meslin, P. Y.; Wiens, R. C.; Rapin, W.; Mangold, N.; Fabre, C.; Gasnault, O.; Forni, O.; Tokar, R.; Ollila, A.; et al. Compositions of Coarse and Fine Particles in Martian Soils at Gale: A Window into the Production of Soils. Icarus 2015, 249, 22–42. https://doi.org/10.1016/j.icarus.2014.04.052.
(73)
Anderson, R.; Bridges, J. C.; Williams, A.; Edgar, L.; Ollila, A.; Williams, J.; Nachon, M.; Mangold, N.; Fisk, M.; Schieber, J.; et al. ChemCam Results from the Shaler Outcrop in Gale Crater, Mars. Icarus 2015, 249, 2–21. https://doi.org/10.1016/j.icarus.2014.07.025.
(74)
Newsom, H. E.; Mangold, N.; Kah, L. C.; Williams, J. M.; Arvidson, R. E.; Stein, N.; Ollila, A. M.; Bridges, J. C.; Schwenzer, S. P.; King, P. L.; et al. Gale Crater and Impact Processes – Curiosity’s First 364 Sols on Mars. Icarus 2015, 249, 108–128. https://doi.org/10.1016/j.icarus.2014.10.013.
(75)
Wiens, R. C.; Maurice, S.; MSL Science Team. ChemCam: Chemostratigraphy by the First Mars Microprobe. Elements 2015, 11 (1), 33–38. https://doi.org/10.2113/gselements.11.1.33.
(76)
Forni, O.; Gaft, M.; Toplis, M. J.; Clegg, S. M.; Maurice, S.; Wiens, R. C.; Mangold, N.; Gasnault, O.; Sautter, V.; Le Mouélic, S.; et al. First Detection of Fluorine on Mars: Implications for Gale Crater’s Geochemistry. Geophysical Research Letters 2015, 42, 1020–1028. https://doi.org/10.1002/2014GL062742.
(77)
Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G. Diagenesis and Clay Mineral Formation at Gale Crater, Mars: Gale Crater Diagenesis. Journal of Geophysical Research: Planets 2015, 120 (1), 1–19. https://doi.org/10.1002/2014JE004757.
(78)
Mezzacappa, A. Towards Higher Precision Laser Induced Breakdown Spectroscopy for Planetary Exploration, Delaware State University, 2015.
(79)
Dehouck, E.; McLennan, S. M.; Meslin, P.-Y.; Cousin, A. Constraints on Abundance, Composition, and Nature of X-Ray Amorphous Components of Soils and Rocks at Gale Crater, Mars. J. Geophys. Res. Planets 2014, 119 (12), 2014JE004716. https://doi.org/10.1002/2014JE004716.
(80)
Léveillé, R. J.; Bridges, J.; Wiens, R. C.; Mangold, N.; Cousin, A.; Lanza, N.; Forni, O.; Ollila, A.; Grotzinger, J.; Clegg, S.; et al. Chemistry of Fracture-Filling Raised Ridges in Yellowknife Bay, Gale Crater: Window into Past Aqueous Activity and Habitability on Mars. Journal of Geophysical Research (Planets) 2014, 119, 2398–2415. https://doi.org/10.1002/2014JE004620.
(81)
Nachon, M.; Clegg, S. M.; Mangold, N.; Schröder, S.; Kah, L. C.; Dromart, G.; Ollila, A.; Johnson, J. R.; Oehler, D. Z.; Bridges, J. C.; et al. Calcium Sulfate Veins Characterized by ChemCam/Curiosity at Gale Crater, Mars. Journal of Geophysical Research (Planets) 2014, 119, 1991–2016. https://doi.org/10.1002/2013JE004588.
(82)
Fabre, C.; Cousin, A.; Wiens, R. C.; Ollila, A.; Gasnault, O.; Maurice, S.; Sautter, V.; Forni, O.; Lasue, J.; Tokar, R.; et al. In Situ Calibration Using Univariate Analyses Based on the Onboard ChemCam Targets: First Prediction of Martian Rock and Soil Compositions. Spectrochimica Acta Part B: Atomic Spectroscopy 2014, 99, 34–51. https://doi.org/10.1016/j.sab.2014.03.014.
(83)
Clegg, S. M.; Wiens, R.; Misra, A. K.; Sharma, S. K.; Lambert, J.; Bender, S.; Newell, R.; Nowak-Lovato, K.; Smrekar, S.; Dyar, M. D.; et al. Planetary Geochemical Investigations Using Raman and Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy 2014, 68 (9), 925–936. https://doi.org/10.1366/13-07386.
(84)
Blaney, D. L.; Wiens, R. C.; Maurice, S.; Clegg, S. M.; Anderson, R. B.; Kah, L. C.; Le Mouélic, S.; Ollila, A.; Bridges, N.; Tokar, R.; et al. Chemistry and Texture of the Rocks at Rocknest, Gale Crater: Evidence for Sedimentary Origin and Diagenetic Alteration. Journal of Geophysical Research (Planets) 2014, 119, 2109–2131. https://doi.org/10.1002/2013JE004590.
(85)
Lanza, N. L.; Fischer, W. W.; Wiens, R. C.; Grotzinger, J.; Ollila, A. M.; Cousin, A.; Anderson, R. B.; Clark, B. C.; Gellert, R.; Mangold, N.; et al. High Manganese Concentrations in Rocks at Gale Crater, Mars. Geophysical Research Letters 2014, 41, 5755–5763. https://doi.org/10.1002/2014GL060329.
(86)
Stack, K. M.; Grotzinger, J. P.; Kah, L. C.; Schmidt, M. E.; Mangold, N.; Edgett, K. S.; Sumner, D. Y.; Siebach, K. L.; Nachon, M.; Lee, R.; et al. Diagenetic Origin of Nodules in the Sheepbed Member, Yellowknife Bay Formation, Gale Crater, Mars. Journal of Geophysical Research (Planets) 2014, 119, 1637–1664. https://doi.org/10.1002/2014JE004617.
(87)
Arvidson, R. E.; Bellutta, P.; Calef, F.; Fraeman, A. A.; Garvin, J. B.; Gasnault, O.; Grant, J. A.; Grotzinger, J. P.; Hamilton, V. E.; Heverly, M.; et al. Terrain Physical Properties Derived from Orbital Data and the First 360 Sols of Mars Science Laboratory Curiosity Rover Observations in Gale Crater. Journal of Geophysical Research (Planets) 2014, 119, 1322–1344. https://doi.org/10.1002/2013JE004605.
(88)
Vasavada, A. R.; Grotzinger, J. P.; Arvidson, R. E.; Calef, F. J.; Crisp, J. A.; Gupta, S.; Hurowitz, J.; Mangold, N.; Maurice, S.; Schmidt, M. E.; et al. Overview of the Mars Science Laboratory Mission: Bradbury Landing to Yellowknife Bay and beyond: MARS SCIENCE LABORATORY MISSION OVERVIEW. Journal of Geophysical Research: Planets 2014, 119 (6), 1134–1161. https://doi.org/10.1002/2014JE004622.
(89)
Melikechi, N.; Mezzacappa, A.; Cousin, A.; Lanza, N. L.; Lasue, J.; Clegg, S. M.; Berger, G.; Wiens, R. C.; Maurice, S.; Tokar, R. L.; et al. Correcting for Variable Laser-Target Distances of Laser-Induced Breakdown Spectroscopy Measurements with ChemCam Using Emission Lines of Martian Dust Spectra. Spectrochimica Acta Part B: Atomic Spectroscopy 2014, 96, 51–60. https://doi.org/10.1016/j.sab.2014.04.004.
(90)
Bridges, N. T.; Calef, F. J.; Hallet, B.; Herkenhoff, K. E.; Lanza, N. L.; Le Mouélic, S.; Newman, C. E.; Blaney, D. L.; de Pablo, M. A.; Kocurek, G. A.; et al. The Rock Abrasion Record at Gale Crater: Mars Science Laboratory Results from Bradbury Landing to Rocknest: ABRASION AT GALE CRATER. Journal of Geophysical Research: Planets 2014, 119 (6), 1374–1389. https://doi.org/10.1002/2013JE004579.
(91)
Vaniman, D. T.; Bish, D. L.; Ming, D. W.; Bristow, T. F.; Morris, R. V.; Blake, D. F.; Chipera, S. J.; Morrison, S. M.; Treiman, A. H.; Rampe, E. B.; et al. Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science 2014, 343, 1243480. https://doi.org/10.1126/science.1243480.
(92)
Schmidt, M. E.; Campbell, J. L.; Gellert, R.; Perrett, G. M.; Treiman, A. H.; Blaney, D. L.; Olilla, A.; Calef, F. J.; Edgar, L.; Elliott, B. E.; et al. Geochemical Diversity in First Rocks Examined by the Curiosity Rover in Gale Crater: Evidence for and Significance of an Alkali and Volatile-Rich Igneous Source. Journal of Geophysical Research (Planets) 2014, 119, 64–81. https://doi.org/10.1002/2013JE004481.
(93)
Sautter, V.; Fabre, C.; Forni, O.; Toplis, M. J.; Cousin, A.; Ollila, A. M.; Meslin, P. Y.; Maurice, S.; Wiens, R. C.; Baratoux, D.; et al. Igneous Mineralogy at Bradbury Rise: The First ChemCam Campaign at Gale Crater. Journal of Geophysical Research (Planets) 2014, 119, 30–46. https://doi.org/10.1002/2013JE004472.
(94)
Ollila, A. M.; Newsom, H. E.; Clark, B.; Wiens, R. C.; Cousin, A.; Blank, J. G.; Mangold, N.; Sautter, V.; Maurice, S.; Clegg, S. M.; et al. Trace Element Geochemistry (Li, Ba, Sr, and Rb) Using Curiosity’s ChemCam: Early Results for Gale Crater from Bradbury Landing Site to Rocknest. Journal of Geophysical Research (Planets) 2014, 119, 255–285. https://doi.org/10.1002/2013JE004517.
(95)
McLennan, S. M.; Anderson, R. B.; Bell, J. F.; Bridges, J. C.; Calef, F.; Campbell, J. L.; Clark, B. C.; Clegg, S.; Conrad, P.; Cousin, A.; et al. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science 2014, 343, 1244734. https://doi.org/10.1126/science.1244734.
(96)
Schmidt, M. E.; Campbell, J. L.; Gellert, R.; Perrett, G. M.; Treiman, A. H.; Blaney, D. L.; Olilla, A.; Calef, F. J.; Edgar, L.; Elliott, B. E.; et al. Geochemical Diversity in First Rocks Examined by the Curiosity Rover in Gale Crater: Evidence for and Significance of an Alkali and Volatile-Rich Igneous Source. Journal of Geophysical Research: Planets 2014, 119 (1), 64–81. https://doi.org/10.1002/2013JE004481.
(97)
Yingst, R. A.; Kah, L. C.; Palucis, M.; Williams, R. M. E.; Garvin, J.; Bridges, J. C.; Bridges, N.; Deen, R. G.; Farmer, J.; Gasnault, O.; et al. Characteristics of Pebble- and Cobble-Sized Clasts along the Curiosity Rover Traverse from Bradbury Landing to Rocknest. Journal of Geophysical Research (Planets) 2013, 118, 2361–2380. https://doi.org/10.1002/2013JE004435.
(98)
Minitti, M. E.; Kah, L. C.; Yingst, R. A.; Edgett, K. S.; Anderson, R. C.; Beegle, L. W.; Carsten, J. L.; Deen, R. G.; Goetz, W.; Hardgrove, C.; et al. MAHLI at the Rocknest Sand Shadow: Science and Science-Enabling Activities. Journal of Geophysical Research: Planets 2013, 118 (11), 2338–2360. https://doi.org/10.1002/2013JE004426.
(99)
Stolper, E. M.; Baker, M. B.; Newcombe, M. E.; Schmidt, M. E.; Treiman, A. H.; Cousin, A.; Dyar, M. D.; Fisk, M. R.; Gellert, R.; King, P. L.; et al. The Petrochemistry of Jake_M: A Martian Mugearite. Science 2013, 341, 1239463. https://doi.org/10.1126/science.1239463.
(100)
Meslin, P.-Y.; Gasnault, O.; Forni, O.; Schröder, S.; Cousin, A.; Berger, G.; Clegg, S. M.; Lasue, J.; Maurice, S.; Sautter, V.; et al. Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science 2013, 341, 1238670. https://doi.org/10.1126/science.1238670.
(101)
Blake, D. F.; Morris, R. V.; Kocurek, G.; Morrison, S. M.; Downs, R. T.; Bish, D.; Ming, D. W.; Edgett, K. S.; Rubin, D.; Goetz, W.; et al. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science 2013, 341, 1239505. https://doi.org/10.1126/science.1239505.
(102)
Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Morris, R. V.; Ming, D. W.; Treiman, A. H.; Sarrazin, P.; Morrison, S. M.; Downs, R. T.; et al. X-Ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science 2013, 341, 1238932. https://doi.org/10.1126/science.1238932.
(103)
Forni, O.; Maurice, S.; Gasnault, O.; Wiens, R. C.; Cousin, A.; Clegg, S. M.; Sirven, J.-B.; Lasue, J. Independent Component Analysis Classification of Laser Induced Breakdown Spectroscopy Spectra. Spectrochimica Acta Part B: Atomic Spectroscopy 2013, 86, 31–41. https://doi.org/10.1016/j.sab.2013.05.003.
(104)
Lane, M. D.; Christensen, P. R. Determining Olivine Composition of Basaltic Dunes in Gale Crater, Mars, from Orbit: Awaiting Ground Truth from Curiosity. Geophysical Research Letters 2013, 40, 3517–3521. https://doi.org/10.1002/grl.50621.
(105)
Williams, R. M. E.; Grotzinger, J. P.; Dietrich, W. E.; Gupta, S.; Sumner, D. Y.; Wiens, R. C.; Mangold, N.; Malin, M. C.; Edgett, K. S.; Maurice, S.; et al. Martian Fluvial Conglomerates at Gale Crater. Science 2013, 340, 1068–1072. https://doi.org/10.1126/science.1237317.
(106)
Wiens, R. C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R. B.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B. L.; Cousin, A.; et al. Pre-Flight Calibration and Initial Data Processing for the ChemCam Laser-Induced Breakdown Spectroscopy Instrument on the Mars Science Laboratory Rover. Spectrochimica Acta Part B: Atomic Spectroscopy 2013, 82, 1–27. https://doi.org/10.1016/j.sab.2013.02.003.
(107)
Anderson, R. B.; Bell, J. F. Correlating Multispectral Imaging and Compositional Data from the Mars Exploration Rovers and Implications for Mars Science Laboratory. Icarus 2013, 223, 157–180. https://doi.org/10.1016/j.icarus.2012.11.029.
(108)
Cousin, A.; Sautter, V.; Fabre, C.; Maurice, S.; Wiens, R. C. Textural and Modal Analyses of Picritic Basalts with ChemCam Laser-Induced Breakdown Spectroscopy. Journal of Geophysical Research (Planets) 2012, 117, E10002. https://doi.org/10.1029/2012JE004132.
(109)
Wiens, R. C.; Maurice, S.; Barraclough, B.; Saccoccio, M.; Barkley, W. C.; Bell, J. F.; Bender, S.; Bernardin, J.; Blaney, D.; Blank, J.; et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests. Space Science Reviews 2012, 170, 167–227. https://doi.org/10.1007/s11214-012-9902-4.
(110)
Vaniman, D.; Dyar, M. D.; Wiens, R.; Ollila, A.; Lanza, N.; Lasue, J.; Rhodes, J. M.; Clegg, S.; Newsom, H. Erratum: Erratum to: Ceramic ChemCam Calibration Targets on Mars Science Laboratory. Space Science Reviews 2012, 170, 257–258. https://doi.org/10.1007/s11214-012-9929-6.
(111)
Vaniman, D.; Dyar, M. D.; Wiens, R.; Ollila, A.; Lanza, N.; Lasue, J.; Rhodes, J. M.; Clegg, S.; Newsom, H. Ceramic ChemCam Calibration Targets on Mars Science Laboratory. Space Science Reviews 2012, 170, 229–255. https://doi.org/10.1007/s11214-012-9886-0.
(112)
Maurice, S.; Wiens, R. C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description. Space Science Reviews 2012, 170, 95–166. https://doi.org/10.1007/s11214-012-9912-2.
(113)
Grotzinger, J. P.; Crisp, J.; Vasavada, A. R.; Anderson, R. C.; Baker, C. J.; Barry, R.; Blake, D. F.; Conrad, P.; Edgett, K. S.; Ferdowski, B.; et al. Mars Science Laboratory Mission and Science Investigation. Space Science Reviews 2012, 170, 5–56. https://doi.org/10.1007/s11214-012-9892-2.
(114)
Anderson, R. Lasers and Landing Sites: The Geomorphology, Stratigraphy, and Composition of Mars. Ph.D. Thesis 2012.
(115)
Dyar, M. D.; Carmosino, M. L.; Breves, E. A.; Ozanne, M. V.; Clegg, S. M.; Wiens, R. C. Comparison of Partial Least Squares and Lasso Regression Techniques as Applied to Laser-Induced Breakdown Spectroscopy of Geological Samples. Spectrochimica Acta Part B: Atomic Spectroscopy 2012, 70, 51–67. https://doi.org/10.1016/j.sab.2012.04.011.
(116)
Ollila, A. M.; Lasue, J.; Newsom, H. E.; Multari, R. A.; Wiens, R. C.; Clegg, S. M. Comparison of Two Partial Least Squares-Discriminant Analysis Algorithms for Identifying Geological Samples with the ChemCam Laser-Induced Breakdown Spectroscopy Instrument. Applied Optics 2012, 51 (7), B130. https://doi.org/10.1364/AO.51.00B130.
(117)
Lanza, N. L.; Clegg, S. M.; Wiens, R. C.; McInroy, R. E.; Newsom, H. E.; Deans, M. D. Examining Natural Rock Varnish and Weathering Rinds with Laser-Induced Breakdown Spectroscopy for Application to ChemCam on Mars. Applied Optics 2012, 51, B74. https://doi.org/10.1364/AO.51.000B74.
(118)
Dyar, M. D.; Carmosino, M. L.; Tucker, J. M.; Brown, E. A.; Clegg, S. M.; Wiens, R. C.; Barefield, J. E.; Delaney, J. S.; Ashley, G. M.; Driese, S. G. Remote Laser-Induced Breakdown Spectroscopy Analysis of East African Rift Sedimentary Samples under Mars Conditions. Chemical Geology 2012, 294–295, 135–151. https://doi.org/10.1016/j.chemgeo.2011.11.019.
(119)
Sobron, P.; Wang, A.; Sobron, F. Extraction of Compositional and Hydration Information of Sulfates from Laser-Induced Plasma Spectra Recorded under Mars Atmospheric Conditions — Implications for ChemCam Investigations on Curiosity Rover. Spectrochimica Acta 2012, 68, 1–16. https://doi.org/10.1016/j.sab.2012.01.002.
(120)
Cousin, A.; Forni, O.; Maurice, S.; Gasnault, O.; Fabre, C.; Sautter, V.; Wiens, R. C.; Mazoyer, J. Laser Induced Breakdown Spectroscopy Library for the Martian Environment. Spectrochimica Acta Part B: Atomic Spectroscopy 2011, 66 (11–12), 805–814. https://doi.org/10.1016/j.sab.2011.10.004.
(121)
Anderson, R. B.; Morris, R. V.; Clegg, S. M.; Bell, J. F.; Wiens, R. C.; Humphries, S. D.; Mertzman, S. A.; Graff, T. G.; McInroy, R. The Influence of Multivariate Analysis Methods and Target Grain Size on the Accuracy of Remote Quantitative Chemical Analysis of Rocks Using Laser Induced Breakdown Spectroscopy. Icarus 2011, 215, 608–627. https://doi.org/10.1016/j.icarus.2011.07.034.
(122)
Lasue, J.; Wiens, R. C.; Stepinski, T. F.; Forni, O.; Clegg, S. M.; Maurice, S.; ChemCam team. Nonlinear Mapping Technique for Data Visualization and Clustering Assessment of LIBS Data: Application to ChemCam Data. Anal Bioanal Chem 2011, 400 (10), 3247–3260. https://doi.org/10.1007/s00216-011-4747-3.
(123)
Fabre, C.; Maurice, S.; Cousin, A.; Wiens, R. C.; Forni, O.; Sautter, V.; Guillaume, D. Onboard Calibration Igneous Targets for the Mars Science Laboratory Curiosity Rover and the Chemistry Camera Laser Induced Breakdown Spectroscopy Instrument. Spectrochimica Acta Part B: Atomic Spectroscopy 2011, 66 (3–4), 280–289. https://doi.org/10.1016/j.sab.2011.03.012.
(124)
Dyar, M. D.; Tucker, J. M.; Humphries, S.; Clegg, S. M.; Wiens, R. C.; Lane, M. D. Strategies for Mars Remote Laser-Induced Breakdown Spectroscopy Analysis of Sulfur in Geological Samples. Spectrochimica Acta Part B: Atomic Spectroscopy 2011, 66 (1), 39–56. https://doi.org/10.1016/j.sab.2010.11.016.
(125)
Lanza, N. Studying Signatures of Water on Mars at the Macro and Micro Scales: Orbital Analyses of Hillslope Geomorphology and ChemCam Calibration for Surficial Rock Chemistry. Ph.D. Thesis 2011.
(126)
Tucker, J. M.; Dyar, M. D.; Schaefer, M. W.; Clegg, S. M.; Wiens, R. C. Optimization of Laser-Induced Breakdown Spectroscopy for Rapid Geochemical Analysis. Chemical Geology 2010, 277 (1–2), 137–148. https://doi.org/10.1016/j.chemgeo.2010.07.016.
(127)
Lanza, N. L.; Wiens, R. C.; Clegg, S. M.; Ollila, A. M.; Humphries, S. D.; Newsom, H. E.; Barefield, J. E. Calibrating the ChemCam Laser-Induced Breakdown Spectroscopy Instrument for Carbonate Minerals on Mars. Applied Optics 2010, 49, C211. https://doi.org/10.1364/AO.49.00C211.
(128)
Clegg, S. M.; Sklute, E.; Dyar, M. D.; Barefield, J. E.; Wiens, R. C. Multivariate Analysis of Remote Laser-Induced Breakdown Spectroscopy Spectra Using Partial Least Squares, Principal Component Analysis, and Related Techniques. Spectrochimica Acta Part B: Atomic Spectroscopy 2009, 64 (1), 79–88. https://doi.org/10.1016/j.sab.2008.10.045.
(129)
Sallé, B.; Mauchien, P.; Maurice, S. Laser-Induced Breakdown Spectroscopy in Open-Path Configuration for the Analysis of Distant Objects. Spectrochimica Acta Part B: Atomic Spectroscopy 2007, 62 (8), 739–768. https://doi.org/10.1016/j.sab.2007.07.001.
(130)
Sirven, J.-B.; Sallé, B.; Mauchien, P.; Lacour, J.-L.; Maurice, S.; Manhès, G. Feasibility Study of Rock Identification at the Surface of Mars by Remote Laser-Induced Breakdown Spectroscopy and Three Chemometric Methods. Journal of Analytical Atomic Spectrometry 2007, 22 (12), 1471. https://doi.org/10.1039/b704868h.
(131)
Sallé, B.; Lacour, J.-L.; Mauchien, P.; Fichet, P.; Maurice, S.; Manhès, G. Comparative Study of Different Methodologies for Quantitative Rock Analysis by Laser-Induced Breakdown Spectroscopy in a Simulated Martian Atmosphere. Spectrochimica Acta 2006, 61, 301–313. https://doi.org/10.1016/j.sab.2006.02.003.
(132)
Thompson, J. R.; Wiens, R. C.; Barefield, J. E.; Vaniman, D. T.; Newsom, H. E.; Clegg, S. M. Remote Laser-Induced Breakdown Spectroscopy Analyses of Dar al Gani 476 and Zagami Martian Meteorites. Journal of Geophysical Research 2006, 111 (E5). https://doi.org/10.1029/2005JE002578.
(133)
Sallé, B.; Cremers, D. A.; Maurice, S.; Wiens, R. C.; Fichet, P. Evaluation of a Compact Spectrograph for In-Situ and Stand-off Laser-Induced Breakdown Spectroscopy Analyses of Geological Samples on Mars Missions. Spectrochimica Acta Part B: Atomic Spectroscopy 2005, 60 (6), 805–815. https://doi.org/10.1016/j.sab.2005.05.007.
(134)
Sallé, B.; Cremers, D. A.; Maurice, S.; Wiens, R. C. Laser-Induced Breakdown Spectroscopy for Space Exploration Applications: Influence of the Ambient Pressure on the Calibration Curves Prepared from Soil and Clay Samples. Spectrochimica Acta Part B: Atomic Spectroscopy 2005, 60 (4), 479–490. https://doi.org/10.1016/j.sab.2005.02.009.
(135)
Radziemski, L.; Cremers, D. A.; Benelli, K.; Khoo, C.; Harris, R. D. Use of the Vacuum Ultraviolet Spectral Region for Laser-Induced Breakdown Spectroscopy-Based Martian Geology and Exploration. Spectrochimica Acta Part B: Atomic Spectroscopy 2005, 60 (2), 237–248. https://doi.org/10.1016/j.sab.2004.12.007.
(136)
Sallé, B.; Lacour, J.-L.; Vors, E.; Fichet, P.; Maurice, S.; Cremers, D. A.; Wiens, R. C. Laser-Induced Breakdown Spectroscopy for Mars Surface Analysis: Capabilities at Stand-off Distances and Detection of Chlorine and Sulfur Elements. Spectrochimica Acta Part B: Atomic Spectroscopy 2004, 59 (9), 1413–1422. https://doi.org/10.1016/j.sab.2004.06.006.
(137)
Arp, Z. A.; Cremers, D. A.; Wiens, R. C.; Wayne, D. M.; Sallé, B.; Maurice, S. Analysis of Water Ice and Water Ice/Soil Mixtures Using Laser-Induced Breakdown Spectroscopy: Application to Mars Polar Exploration. Applied Spectroscopy 2004, 58 (8), 897–909. https://doi.org/10.1366/0003702041655377.
(138)
Brennetot, R.; Lacour, J. L.; Vors, E.; Rivoallan, A.; Vailhen, D.; Maurice, S. Mars Analysis by Laser-Induced Breakdown Spectroscopy (MALIS): Influence of Mars Atmosphere on Plasma Emission and Study of Factors Influencing Plasma Emission with the Use of Doehlert Designs. Applied Spectroscopy 2003, 57 (7), 744–752. https://doi.org/10.1366/000370203322102816.
(139)
Wiens, R. C.; Arvidson, R. E.; Cremers, D. A.; Ferris, M. J.; Blacic, J. D.; Seelos, F. P.; Deal, K. S. Combined Remote Mineralogical and Elemental Identification from Rovers: Field and Laboratory Tests Using Reflectance and Laser-Induced Breakdown Spectroscopy: IDENTIFICATION USING REFLECTANCE AND LIBS. Journal of Geophysical Research: Planets 2002, 107 (E11), FIDO 3-1-FIDO 3-14. https://doi.org/10.1029/2000JE001439.
(140)
Knight, A. K.; Scherbarth, N. L.; Cremers, D. A.; Ferris, M. J. Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for Application to Space Exploration. Applied Spectroscopy 2000, 54 (3), 331–340. https://doi.org/10.1366/0003702001949591.